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Summary 
 

Computational models that simulate real-world physical processes are playing an 
ever-increasing role in engineering and physical sciences.  These models, encoding 
physical rules and principles such as Maxwell’s equations or the conservation of mass, 
are typically based on differential and/or integral equations.  Advances in computing 
hardware and algorithms have dramatically improved the ability to computationally 
simulate complex processes, enabling simulation and analysis of phenomena that in the 
past could be addressed only by resource-intensive experimentation, if at all.   

Computational models are being used to study processes as large scale as the 
evolution of the universe and as small scale as protein folding.  They are used to predict 
the future state of Earth’s climate and to decide among alternative product designs in 
manufacturing.  Nevertheless, regardless of their underlying mathematical formalism or 
their intended purpose, they share a common feature—they are not reality.    

Models differ from reality for a variety of reasons.  Key model inputs—initial 
conditions, boundary conditions, or important parameters controlling the model—are 
usually not known with certainty or are inadequately described.  For example, an ocean 
model must be initialized with temperature, salinity, pressure, velocity, and so on over 
the entire planet before it can run, but these variables are not precisely known.  Another 
source of discrepancy between model and reality is the approximations that are necessary 
for representing mathematical concepts within a computational model.  For example, the 
ocean must be represented on a grid, or some other finite data structure, and 
computational operations propagating this ocean over time are only approximations of 
mathematics defined on the continuum.  More fundamentally still, models deviate from 
reality because they necessarily ignore some phenomena and represent others as simpler 
than they really are.  Without such omissions and simplifications the models would be 
intractably complicated. 

Given inevitable flaws and uncertainties, how should computational results be 
viewed by those who wish to act on them? The appropriate level of confidence in the 
results must stem from an understanding of the model’s limitations and the uncertainties 
inherent in its predictions. Ideally this understanding can be obtained from three 
interrelated processes that answer key questions: 

 
  Verification.  How accurately does the computation solve the underlying 

equations of the model for the quantities of interest? 
  Validation.  How accurately does the model represent reality for the quantities of 

interest? 
  Uncertainty Quantification (UQ).  How do the various sources of error and 

uncertainty feed into uncertainty in the model-based prediction of the quantities of 
interest? 

 
Computational scientists and engineers have made significant progress in 

developing these processes and using them to produce not just a single predicted value of 
a physical quantity of interest (QOI), but also information about the range of values that 
the QOI may have in light of the uncertainties and errors inherent in a computational 
model.  However, there remain many open questions, including questions about the 
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mathematical foundations on which various processes and methods are based or could be 
based. 

In recognition of the importance of computational simulations and the need to 
understand uncertainties in their results, the Department of Energy’s (DOE’s) National 
Nuclear Security Administration, the DOE’s Office of Science, and the Air Force Office 
of Scientific Research requested that the National Research Council study the 
mathematical sciences foundations of verification, validation, and uncertainty 
quantification (VVUQ) and recommend steps that will lead to improvements in VVUQ 
capabilities.  The statement of tasks is as follows: 

 
 A committee of the National Research Council will examine practices for 

VVUQ of large-scale computational simulations in several research 
communities. 

 The committee will identify common concepts, terms, approaches, tools, 
and best practices of VVUQ.   

 The committee will identify mathematical sciences research needed to 
establish a foundation for building a science of verification and validation 
(V&V) and for improving the practice of VVUQ. 

 The committee will recommend educational changes needed in the 
mathematical sciences community and mathematical sciences education 
needed by other scientific communities to most effectively use VVUQ. 

 
 

Key Principles and Practices 
 

The Committee on Mathematical Foundations of Verification, Validation, and 
Uncertainty Quantification views its charge as emphasizing the mathematical aspects of 
VVUQ and, because of the breadth of the subject overall, has limited it focus to physics-
based and engineering models.  However, much of its discussion applies more broadly.  
Although the case studies presented in this report include physics or engineering 
considerations, they are meant to illuminate mathematical aspects of the associated 
VVUQ analysis.  The committee noted several key VVUQ principles: As a first step 
toward identifying best practices, 

 
 VVUQ tasks are interrelated.  A solution-verification study may incorrectly 

characterize the accuracy of the code’s solution if code verification was 
inadequate.  A validation assessment depends on the assessment of numerical 
error produced by solution verification and on the propagation of model-input 
uncertainties to computed QOIs. 

 The processes of VVUQ should be applied in the context of an identified set of 
QOIs.  A model may provide an excellent approximation to one QOI in a given 
problem while providing poor approximations to other QOIs.  Thus, the questions 
that VVUQ must address are not well posed unless the QOIs have been defined. 

 Verification and validation are not yes/no questions with yes/no answers, but 
rather are quantitative assessments of differences.  Solution-verification 
characterizes the difference between a computational model’s solution and that of 
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the underlying mathematical model.  Validation involves quantitative 
characterization of the difference between computed QOIs and true physical 
QOIs. 

 
Specific to verification, the committee identified several guiding principles and 

associated best practices.  The main report discusses all of these and provides supporting 
detail.  Some of the more important principles and practices are summarized here: 

 
• Principle:  Solution verification is well defined only in terms of specified 

quantities of interest, which are usually functionals of the full computed solution.  
– Best practice:  Clearly define the QOIs for a given VVUQ analysis 

including the solution-verification task.  Different QOIs will be affected 
differently by numerical errors. 

– Best practice:  Ensure that solution verification encompasses the full range 
of inputs that will be employed during UQ assessments. 

• Principle:  The efficiency and effectiveness of code and solution verification can 
often be enhanced by exploiting the hierarchical composition of codes and 
mathematical models, with verification performed first on the lowest-level 
building blocks and then on successively more complex levels. 

– Best practice:  Identify hierarchies in computational and mathematical 
models and exploit them for code and solution verification.  It is often 
worthwhile to design the code with this approach in mind. 

– Best practice:  Include in the test suite problems that test all levels in the 
hierarchy. 

• The goal of solution verification is to estimate, and control if possible, the error in 
each QOI for the problem at hand. 

– Best practice:  When possible in solution verification, use goal-oriented a 
posteriori error estimates, which give numerical error estimates for specified 
QOIs.  In the ideal case the fidelity of the simulation is chosen so that the 
estimated errors are small compared to the uncertainties arising from other 
sources.    

– Best practice:  If goal-oriented a posteriori error estimates are not available, 
try to perform self-convergence studies (in which QOIs are computed at 
different levels of refinement) on the problem at hand, which can provide 
helpful estimates of numerical error. 

 
Many VVUQ tasks introduce questions that can be posed, and in principle 

answered, within the realm of mathematics.  Validation and prediction introduce 
additional questions whose answers require judgments from the realm of subject-matter 
expertise.  For validation and prediction, the committee identified several principles and 
associated best practices, which are detailed in the main report.  Some of the more 
important of these are summarized here: 

 
• Principle:  A validation assessment is well defined only in terms of specified 

quantities of interest (QOIs) and the accuracy needed for the intended use of the 
model. 

S-3 
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– Best practice:  Early in the validation process, specify the QOIs that will 
be addressed and the required accuracy. 

– Best practice: Tailor the level of effort in assessment and estimation of 
prediction uncertainties to the needs of the application. 

• Principle:  A validation assessment provides direct information about model 
accuracy only in the domain of applicability that is “covered” by the physical 
observations employed in the assessment. 

– Best practice:  When quantifying or bounding model error for a QOI in the 
problem at hand, systematically assess the relevance of supporting data 
and validation assessments (which were based on data from different 
problems, often with different QOIs).  Subject-matter expertise should 
inform this assessment of relevance (as discussed above and in chapter 7). 

– Best practice:  If possible, use a broad range of physical observation 
sources so that the accuracy of a model can be checked under different 
conditions and at multiple levels of integration. 

– Best practice:  Use “holdout tests” to test validation and prediction 
methodologies.  In such a test some validation data is withheld from the 
validation process, the prediction machinery is employed to “predict” the 
withheld QOIs, with quantified uncertainties, and finally the predictions 
are compared to the withheld data. 

– Best practice:  If the desired QOI was not observed for the physical 
systems used in the validation process, compare sensitivities of the 
available physical observations with those of the QOI. 

– Best practice:  Consider multiple metrics for comparing model outputs 
against physical observations.   

• Principle:  The efficiency and effectiveness of validation and prediction 
assessments are often improved by exploiting the hierarchical composition of 
computational and mathematical models, with assessments beginning on the 
lowest-level building blocks and proceeding to successively more complex levels. 

– Best practice:  Identify hierarchies in computational and mathematical 
models, seek measured data that facilitates hierarchical validation 
assessments, and exploit the hierarchical composition to the extent 
possible. 

– Best practice: If possible, use physical observations, especially at more 
basic levels of the hierarchy, to constrain uncertainties in model inputs and 
parameters. 

• Principle: Validation and prediction often involve specifying or calibrating model 
parameters. 

– Best practice: Be explicit about what data/information sources are used to 
fix or constrain model parameters. 

– Best practice: If possible, use a broad range of observations over carefully 
chosen conditions to produce more reliable parameter estimates and 
uncertainties, with less “trade-off” between different model parameters. 

• Principle:  The uncertainty in the prediction of a physical QOI must be aggregated 
from uncertainties and errors introduced by many sources, including discrepancies 
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in the mathematical model, numerical and code errors in the computational 
model, and uncertainties in model inputs and parameters. 

– Best practice:  Document assumptions that go into the assessment of 
uncertainty in the predicted QOI, and also document any omitted factors.  
Record the justification for each assumption and omission. 

– Best practice:  Assess the sensitivity of the predicted QOI and its 
associated uncertainties to each source of uncertainty as well as to key 
assumptions and omissions.    

– Best practice:  Document key judgments—including those regarding the 
relevance of validation studies to the problem at hand—and assess the 
sensitivity of the predicted QOI and its associated uncertainties to 
reasonable variations in these judgments. 

– Best practice: The methodology used to estimate uncertainty in the 
prediction of a physical QOI should also be equipped to identify paths for 
reducing uncertainty. 

• Principle:  Validation assessments must take into account the uncertainties and 
errors in physical observations (measured data).   

– Best practice:  Identify all important sources of uncertainty/error in 
validation data—including instrument calibration, uncontrolled variation 
in initial conditions, variability in measurement setup, and so on—and 
quantify the impact of each. 

– Best practice:  If possible, use replications to help estimate variability and 
measurement uncertainty. 

– Remark:  Assessing measurement uncertainties can be difficult when the 
“measured” quantity is actually the product of an auxiliary inverse 
problem—that is, when it is not measured directly but is inferred from 
other measured quantities. 

 
 

Promising Research Areas 
 

After surveying the today’s VVUQ methods and their mathematical foundations, 
the committee identified several research topics that offer the promise of improved 
methods and improved outcomes.  The areas identified for verification research are 
discussed in detail in Chapter 3 and summarized in Chapter 7; they include: 

 
 Development of goal-oriented a posteriori error-estimation methods that can be 

applied to mathematical models that are more complicated than linear elliptic 
PDEs. 

 Development of algorithms for goal-oriented error estimates that scale well on 
massively parallel architectures, especially given complicated grids (including 
adaptive-mesh grids). 

 Development of methods to estimate error bounds when meshes cannot resolve 
important scales.  An example is turbulent fluid flow. 

 Development of reference solutions, including “manufactured” solutions, for the 
kinds of complex mathematical models described above. 
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 For computational models that are composed of simpler components, including 
hierarchical models: development of methods that use numerical-error estimates 
from the simpler components, along with information about how the components 
are coupled, to produce numerical-error estimates for the overall model. 

 
Research needed to improve uncertainty quantification methodologies is discussed 

in Chapter 4 and summarize in Chapter 7.  Key identified UQ research topics include: 
 
 Development of scalable methods for constructing emulators that reproduce the 

high-fidelity model results at training points, accurately capture the uncertainty 
away from training points, and effectively exploit salient features of the response 
surface.  

 Development of phenomena-aware emulators, which would incorporate 
knowledge about the phenomena being modeled and thereby enable better 
accuracy away from training points. 

 Development of methods for characterizing rare events, for example by 
identifying input configurations for which the model predicts significant rare 
events and estimating their probabilities. 

 Development of methods for propagating and aggregating uncertainties and 
sensitivities across hierarchies of models. (For example, how to aggregate 
sensitivity analyses across micro-scale, meso-scale, and macro-scale models to 
give accurate sensitivities for the combined model remains an open problem.) 

 Research and development in the compound area of (1) extracting derivatives and 
other features from large-scale computational models and (2) developing UQ 
methods that efficiently use this information. 

 Development of techniques to address high-dimensional spaces of uncertain 
inputs.    

 Development of algorithms and strategies across the spectrum of UQ-related tasks 
that can efficiently use modern and future massively parallel computer 
architectures. 

 
Promising research topics to support validation and prediction are discussed in 

Chapter 5 and summarized in Chapter 7.  Identified topics for validation and prediction 
include: 

 
 Development of methods and strategies to quantify the effect of subject-matter 

judgments, which necessarily are involved in validation and prediction, on VVUQ 
outcomes. 

 Development of methods that help to define the “domain of applicability” of a 
model, including methods that help quantify the notions of near neighbors, 
interpolative predictions, and extrapolative predictions. 

 Development of methods or frameworks that help with the important problem of 
relating model-to-model differences, among models in an ensemble, to the 
discrepancy between models and reality. 
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 Development of methods to assess model discrepancy and other sources of 
uncertainty in the case of rare events, especially when validation data does not 
include such events. 

 
Computational modeling and simulation will continue to play key roles in research 

in engineering and physical sciences (and in many other fields).  It already aids scientific 
discovery, advances understanding of complex physical systems, augments physical 
experimentation, and informs important decisions. Future advances will be determined in 
part by how well VVUQ methodology can integrate with the next generation of 
computational models, high performance computing infrastructure, and subject matter 
expertise.  This integration will require that students in these various areas be adequately 
educated in the mathematical foundations of VVUQ.  The committee observes that 
students in VVUQ-dependent fields are not as well prepared today as they could be to 
deal with uncertainties that invariably affect problem formulation, software development, 
and interpretation and presentation of results.  As requested by our tasking, the committee 
has identified several actions that could help to address this: 

 
Recommendation:  An effective VVUQ education should encourage students to 
confront and reflect on the ways that knowledge is acquired, used, and updated.   

 
Recommendation:  The elements of probabilistic thinking, physical-systems modeling, 
and numerical methods and computing should become standard parts of the respective 
core curricula for scientists, engineers, and statisticians.   

 
Recommendation:  Researchers should understand both VVUQ methods and 
computational modeling to more effectively exploit synergies at their interface.  
Educational programs, including research programs with graduate-education components, 
should be designed to foster this understanding. 

 
Recommendation:  Support for interdisciplinary programs in predictive science, 
including VVUQ, should be made available for education and training to produce 
personnel that are highly qualified in VVUQ methods. 

 
Recommendation:  Federal agencies should promote the dissemination of VVUQ 
materials and the offering of informative events for instructors and practitioners. 
 
 

Summary Approach 
 
In summary, the committee has studied VVUQ as it applies to predictive science and 
engineering, with a focus on the mathematical foundations of VVUQ methodologies.  We 
have identified key principles that we find helpful and identified best practices that we 
have observed in the application of VVUQ to difficult problems in computational science 
and engineering.  We have identified research areas that promise to improve the 
mathematical foundations that undergird VVUQ processes.  Finally, we have discussed 
changes in education of professionals and dissemination of information that should 
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enhance the ability of future VVUQ practitioners to improve and properly apply VVUQ 
methodologies to difficult problems, enhance the ability of VVUQ customers to 
understand VVUQ results and use them to make informed decisions, and enhance the 
ability of all VVUQ stakeholders to communicate with each other.  We offer our 
observations and recommendations in the hope that they will help the VVUQ community 
as it continues to improve VVUQ processes and broaden their applications. 
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1 Introduction 

 
1.1 OVERVIEW AND STUDY CHARTER 

 
Advances in computing hardware and algorithms have dramatically improved the 

ability to simulate complex processes computationally.  Today’s simulation capabilities 
offer the prospect of addressing questions that in the past could be addressed only by 
resource-intensive experimentation, if at all.  However, computational results almost 
always depend on inputs that are uncertain, rely on approximations that introduce errors, 
and are based on mathematical models1 that are imperfect representations of reality.  
Hence, given some calculated “quantity of interest” (QOI) from the computational model, 
the corresponding true physical QOI is uncertain.  If this uncertainty—the relationship 
between the true value of the QOI and the prediction of the computational model—
cannot be quantified or bounded, then the computational results have limited value.  This 
report recognizes the ubiquity of uncertainty in computational estimates of reality and the 
necessity for its quantification. In response to the observation of George Box that “all 
models are wrong, but some may be useful” (Box and Draper, 1987, p. 424), this report 
explores how to make models as useful as possible by quantifying how wrong they are. 

In a typical computational science and/or engineering analysis, the physical system 
to be simulated is represented by a mathematical model, which often comprises a set of 
differential and/or integral equations.  The mathematical model is approximated in some 
way so that the solution of the approximated model can be found by executing a set of 
algorithms on a computer.  For example, derivatives may be approximated by finite 
differences, series expansions may be truncated, and so on.  The computer code’s 
implementation of the algorithms that approximately solve the mathematical model is 
often called the computational model or computer model.   

As computational science and engineering have matured, the process of quantifying 
or bounding uncertainties in a computational estimate of a physical QOI has evolved into 
a small set of interdependent tasks.  These tasks are verification, validation, and 
uncertainty quantification, which are abbreviated as “VVUQ” in this report.  Briefly and 
approximately: verification determines how well the computational model solves the 
math-model equations, validation determines how well the model represents the true 
physical system, and uncertainty quantification (UQ) plays important roles in validation 
and prediction. 

In recognition of the increasing importance of computational simulation and the 
increasing need to assess uncertainties in computational results, the National Research 
Council (NRC) was asked to study the mathematical foundations of VVUQ and to 
recommend steps that will ultimately lead to improved processes.  The specific tasking to 
the Committee on Mathematical Foundations of Verification, Validation, and Uncertainty 
Quantification is as follows:    

 

                                                 
1 In this report, a model is defined as a representation of some portion of the world in a readily 
manipulatable form.  A mathematical model uses the form of mathematical language and equations. 
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 A committee of the National Research Council will examine practices for VVUQ of 
large-scale computational simulations in several research communities. 

 The committee will identify common concepts, terms, approaches, tools, and best 
practices of VVUQ.   

 The committee will identify mathematical sciences research needed to establish a 
foundation for building a science of verification and validation and for improving the 
practice of VVUQ. 

 The committee will recommend educational changes needed in the mathematical 
sciences community and mathematical sciences education needed by other scientific 
communities to most effectively use VVUQ. 

 
 

1.2 VVUQ DEFINITIONS 
 
Figure 1.1 illustrates the different elements of VVUQ and their relationships to the 

true, physical system, the mathematical model, and the computational model.  
Uncertainty quantification does not appear explicitly in the figure, but it plays important 
roles in the processes of validation and prediction.  

 

 
FIGURE 1.1  Verification, validation, and prediction as they relate to the true, physical 
system, the mathematical model, and the computational model.  (Adapted from AIAA 
[1998].) 

 
There is general agreement about the purposes of verification, validation, and 

uncertainty quantification, but different groups can differ on the details of each term’s 
definition.  For purposes of this report the committee adopts the following definitions:    

 
 Verification:  The process of determining how accurately a computer 

program (“code”) correctly solves the equations of the mathematical model.  
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This includes code verification (determining whether the code correctly 
implements the intended algorithms) and solution verification (determining 
the accuracy with which the algorithms solve the mathematical model’s 
equations for specified QOIs). 

 Validation:  The process of determining the degree to which a model is an 
accurate representation of the real world from the perspective of the 
intended uses of the model (taken from AIAA, 1998). 

 Uncertainty Quantification (UQ):  The process of quantifying uncertainties 
associated with model calculations of true, physical QOIs, with the goals of 
accounting for all sources of uncertainty and quantifying the contributions 
of specific sources to the overall uncertainty. 

 
In this report “quantifying uncertainty” in a prediction for a QOI means making a 

quantitative statement about the values that the QOI for the physical system may take, 
often in a new, unobserved setting.  The statement could take the form of a bounding 
interval, a confidence interval, or a probability distribution, perhaps accompanied by an 
assessment of confidence in the statement.  Much more is said on this topic throughout 
this introduction and the rest of the report. 

There is wide but not universal agreement on the terms, concepts, and definitions 
described above.  These and other terms, many of which are potentially confusing terms 
of art, are discussed in the Glossary (Appendix A). 

 
 

1.3 SCOPE OF THIS STUDY 
 

1.3.1  Focus on Prediction with Physics/Engineering Models 
 
Mathematical models for the computational simulation of complex real-world 

processes are a crucial ingredient in virtually every field of science, engineering, 
medicine, and business.  The focus of this report is on physics-based and engineering 
models, which often provide a strong basis for producing useful extrapolative predictions.   

There is a wide range of models, but the science and engineering models on which 
this report focuses are most commonly composed of integral equations and partial and 
ordinary differential equations.  Each modeling scenario has unique issues and 
characteristics that strongly affect the implementation of VVUQ.  Relevant issues include 
the following: 

 
  The level of empiricism versus physical laws encoded in the model, 
  The availability and relevance of physical data to the predictions required by the 

scenario, 
  The extent of interpolation versus extrapolation needed for the required 

predictions, 
  The complexity of the physical system being modeled, and 
  The computational demands of running the computational model. 
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The modeling framework assumed throughout most of this report is common in 
science and engineering: a complex physical process or structure is modeled using 
applied mathematics, typically with a mathematical model consisting of partial 
differential equations and/or integral equations and with a computational model that 
solves a numerical approximation of the mathematical model.  Referring to the issues 
listed above, this report considers scenarios in which: 

 
  Models are strongly governed by physical constraints and rules, 
  The availability of relevant physical observations is limited, 
  Predictions may be required in untested and/or unobserved physical conditions, 
  The physical system being modeled may be quite complex, and 
  The computational demands of the model may limit the number of simulations 

that can be carried out.   
 

Of course many of these scenarios are found in other simulation and modeling 
applications.  To this extent, the topics covered in this report are applicable to other 
modeling applications 

 
1.3.2 Focus on Mathematical and Quantitative Issues 

 
The focus on mathematical foundations of VVUQ leads this committee to omit 

important concepts of model evaluation that are more qualitative in nature.  The NRC 
report Models in Environmental Regulatory Decision Making (NRC, 2007a) considers a 
much broader perspective on model evaluation, including topics such as conceptual 
model formulation, peer review, and transparency that are not considered in this report.  
Behavioral Modeling and Simulation: From Individuals to Societies (NRC, 2007b) 
considers VVUQ for behavioral, organizational, and societal models. 

This report utilizes several examples to illustrate the challenges of executing a 
mathematically founded VVUQ analysis.  Some of these examples have broad 
implications and their inclusion in this report is intended as a means to communicate 
VVUQ concepts and is not intended as a broader discussion of decision making with 
models.  VVUQ activities enhance the decision-making process and are part of a larger 
group of decision-support tools that include modeling, simulation, and experimentation.  
The types of decisions discussed in this report can be grouped into two broad categories: 
(1) decisions that arise as part of the planning and conduct of the VVUQ activities 
themselves and (2) decisions made with the use of VVUQ results about an application at 
hand.  Chapter 6 discusses the role that VVUQ plays in decision making and includes two 
examples of how VVUQ fits in with the decision-making process. 

  
 

1.4 VVUQ PROCESSES AND PRINCIPLES 
 
VVUQ processes must focus on a set of specified QOIs rather than on the full 

solution of the model.  Quantitative statements about errors and uncertainties are well 
founded only in reference to specified QOIs.  For example, there may be much more 
uncertainty in the estimate of maximum stress than in that of average stress in some 
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component of some structure; thus, no single statement quantifying uncertainty would 
apply to both of these example QOIs.  Similarly, a model may provide accurate estimates 
for one QOI while yielding inaccurate results for another. 

Many physical systems of interest can be viewed as being composed of subsystems, 
which are themselves composed of sub-subsytems, and so on.  Many large-scale 
computational models are similarly built up from a hierarchy of models, culminating in a 
complex integrated model.  Such hierarchies are illustrated in Figure 1.2.  

 
FIGURE 1.2  Validation phases suggested in AIAA (1998), based on hierarchically 
decomposing a physical system and the models that represent it.  Levels in the validation 
hierarchy range from simple unit problems to benchmark cases to more integrated 
subsystems and eventually to the complete, integrated system.  Verification and 
uncertainty quantification processes can fruitfully exploit a similar hierarchy. 

 
The advantage of such a hierarchy is that one can begin the VVUQ processes 

with the lowest-level subsystems, whose models are less complicated and whose 
data are easier and cheaper to obtain.  Once this is done for the lowest-level 
subsystems and models, the results form a foundation for VVUQ at the next level in 
the hierarchy, and so on up to the full system and its QOIs.  

 
1.4.1 Verification 

 
Code verification—determining whether the code correctly executes the 

intended algorithms—presupposes a computer code that has been developed with 
software-quality engineering practices and results that are appropriate for the 
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intended use.  This report assumes that such practices are in play but does not 
discuss them.  Code verification relies on test problems for which the intended 
algorithm’s correct solution is known.  It is challenging to develop a suite of such 
problems that test all of the relevant algorithms under all relevant combinations of 
options.  Even if a typical complex science or engineering code is behaves as 
expected for a large number of tests, one cannot prove that it has no algorithmic 
errors. 

Solution verification—determining how accurately the numerical algorithm 
solves the mathematical model equations—must be carried out in terms of specified  
QOIs, which are usually functionals of the full computed solution.  The goal of 
solution verification is to estimate, and control if possible, the error in each QOI for 
the simulation problem at hand.  The error in a given QOI should not be assumed to 
be of the same magnitude as the error in another; rather, solution verification must 
be performed for each QOI individually.  Further, the error in a given QOI in a 
given problem may differ significantly from the error in the same QOI in a slightly 
different problem. 

As noted above, the efficiency and effectiveness of code and solution 
verification processes can often be enhanced by exploiting the hierarchical 
composition of codes and solutions, verifying first the lowest-level building blocks 
and moving successively to more complex levels.  

 
1.4.2 Validation 

 
The process of validation involves comparisons between QOIs computed by the 

model and corresponding true, physical QOIs inferred from physical observations or 
experiments.  The intended use of the model determines how close the model’s QOIs 
must be to the true QOIs in order for the model to serve its purpose; that is, the intended 
use determines the requirements on model accuracy.  Validation comparisons are 
conducted relative to these requirements.   

In designing experiments for a validation hierarchy, the goal is to carry out a 
sequence of experiments efficiently, at different levels of the hierarchy, to assess 
quantitatively the model’s ability to predict the QOIs at the full system level.  Often 
in science and engineering applications there are parameters within a model whose 
values are not known from theory or prior measurements.  The best values—or a 
multivariate probability distribution—for these parameters for a given application 
must be inferred from new measurements.  This inference process is calibration.  
When calibration is required, it is most efficiently and accurately performed at the 
lowest hierarchical level that provides the needed data.  Higher levels introduce 
confounding factors that make it more difficult to draw quantitative inferences 
about the parameters in question.   

Many factors arise in practice to complicate the validation process.  Measurement 
and inference errors contaminate the QOIs determined from physical observations or 
experiments.  The difference between the computational model and the mathematical 
model—partly caused by numerical approximations and imperfect iterative 
convergence—can make it difficult to infer anything about the mathematical model and 
difficult to determine whether a computational model is getting the “right answer for the 
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right reason.” Validation must also take into account the effects of uncertainties in model-
input parameters on computed QOIs; thus, the validation process involves UQ processes.  
These complications are discussed in the Chapter 5, “Model Validation and Prediction.”  

 
1.4.3 Prediction 

 
Some experts distinguish model-based predictions at conditions similar to those for 

which physical observations exist from predictions at new, untested conditions for the 
physical system (AIAA, 1998; Oberkampf et al., 2004).  The terms interpolative 
prediction and extrapolative prediction can be used to refer to the former and latter cases, 
respectively.  Suppose that validation assessments have quantified the differences 
between calculated QOIs and corresponding physical QOIs that were inferred from many 
previous measurements.  Then in the interpolative case, one may be justified in assuming 
a difference of similar magnitude between the predicted QOI and the true, physical QOI 
in the untested system.  The extrapolative case is more difficult.  The new conditions may 
introduce physical phenomena that are not well modeled, for example, causing the 
prediction to have greater error than the errors seen in the validation study.  That is, it can 
be risky to assume that the validation study provides a reliable quantitative estimate of 
the model error for the new problem.  If the validation study is assessed not to be reliable 
for the new problem, it is difficult to find a rigorous basis for quantifying the uncertainty 
in the computationally estimated QOI.  

The preceding discussion speaks of interpolative predictions as being relatively 
straightforward and “safe,” and of extrapolative predictions as being relatively difficulty 
and “risky.”  While this is intuitively appealing, outside of exceedingly simple settings 
there is no satisfactory mathematical definition of interpolative or extrapolative 
categories given the complex science and engineering problems that are addressed in this 
report.  The problems of interest are characterized by large numbers of parameters, which 
can be viewed mathematically as forming a high-dimensional problem-domain space in 
which each problem corresponds to a point in the space.  Given a finite set of physical 
observations in such a high-dimensional space, virtually any new problem will be an 
extrapolation beyond the portion of the domain that is “enclosed” by this set.  Even if a 
new problem can be considered interior to the set of available physical observations, the 
estimated prediction uncertainty may be unreliable unless the QOI is a smooth function 
over this domain space.  These and related issues are discussed in Chapter 5, “Model 
Validation and Prediction.” 

 
1.4.4   Uncertainty Quantification 

 
The definition adopted in this report for uncertainty quantification describes the 

overall task of assessing uncertainty in a computational estimate of a physical QOI.  This 
overall task involves many smaller UQ tasks, which are briefly discussed here.  This 
discussion does not explicitly mention exploitation of hierarchical decompositions of the 
problem, illustrated in Figure 1.2, but such exploitation should be considered when 
possible in the execution of any VVUQ process. 

In the following discussion, it is assumed that preliminaries (code verification, 
model-parameter calibration if necessary, and validation exercises that have quantified or 
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bounded model error) have been successfully accomplished before UQ begins for a 
prediction.  As mentioned previously in this section, an important question that must be 
addressed is whether the model error inferred from validation studies is reliably relevant 
to the new problem being predicted.  

The first UQ task is to quantify uncertainties in model inputs, often by specifying 
ranges or probability distributions.  Model inputs include those that do not vary from 
problem to problem (acceleration of gravity, thermal conductivity of a given material, 
etc.) as well as those that are problem-dependent (such as boundary and initial 
conditions). 

A key UQ task is to propagate input uncertainties through the calculation to 
quantify the effects of those uncertainties on the computed QOIs.  Whether or not the 
computational model is an adequate representation of reality, understanding the mapping 
of inputs to outputs in the model is a key ingredient in the assessment of prediction 
uncertainty and in gaining an understanding of model behavior.  It is conceptually 
possible to generate a large set of Monte Carlo samples of inputs, run these random input 
settings through the model, and collect the resulting model outputs to accomplish the 
forward propagation of input uncertainty.  However, the computational demands of the 
model often preclude the possibility of carrying out a large ensemble of model runs, and 
the number of points required to sample a high-dimensional input-parameter space 
densely is prohibitively large.  Also, understanding low-probability high-consequence 
events is difficult using standard Monte Carlo schemes because such events are rarely 
generated.  Current research in mathematical foundations of VVUQ, described in Chapter 
4, “Emulation, Reduced-Order Modeling, and Forward Propagation,” is focused on 
approaches for overcoming these challenges for forward propagation of uncertainties. 

Another UQ task is quantification of variability in the true physical QOI, which can 
arise from random processes or from “hidden” variables that are absent from the model.  
Appropriate methods for quantification depend on the source and nature of the 
variability.   

An important UQ task is the aggregation of uncertainties that arise from different 
sources.  The uncertainties in the QOI that are due to uncertain inputs, true physical 
variability, numerical error, and model error must be combined into a quantitative 
characterization of the overall uncertainty in the computational prediction of a given 
physical QOI.  This UQ challenge and the others mentioned above are discussed in more 
detail in Chapter 4, “Emulation, Reduced-Order Modeling, and Forward Propagation.” 

 
1.4.5 Key VVUQ Principles 

 
A summary of several observations regarding VVUQ follows: 
 
 VVUQ tasks are interrelated.  A solution-verification study may incorrectly 

characterize the accuracy of the code’s solution if code verification was 
inadequate.  A validation assessment depends on the assessment of numerical 
error produced by solution verification and on the propagation of model-input 
uncertainties to computed QOIs. 

 The processes of VVUQ should be applied in the context of an identified set of 
QOIs.  A model may provide an excellent approximation to one QOI in a given 
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problem while providing poor approximations to other QOIs.  Thus, the questions 
that VVUQ must address are not well posed unless the QOIs have been defined. 

 Verification and validation are not yes/no questions with yes/no answers but 
instead are quantitative assessments of differences.  Solution verification 
characterizes the difference between the computational model’s solution and the 
underlying mathematical model’s solution.  Validation involves quantitative 
characterization of the difference between computed QOIs and true, physical 
QOIs. 

 
 

1.5 UNCERTAINTY AND PROBABILITY 
 

It is unanimously agreed that statistics depends somehow on probability.  But, as to 
what probability is and how it is connected with statistics, there has seldom been such 
complete disagreement and breakdown of communication since the Tower of Babel.  
Doubtless, much of the disagreement is merely terminological and would disappear under 
sufficiently sharp analysis. (Savage,1954, p. 2) 
 
The hopeful view expressed in the last sentence of the quotation above more than 

50 years ago has not been realized.  Controversy still abounds concerning the meaning 
and use of probability and related notions to capture uncertainty (e.g., fuzzy logic).  It is 
neither possible to address these issues comprehensively in this report, nor is it the 
purpose of this study.  In the interest of clarity, one framework for reasoning about 
uncertainty was chosen (out of many possible) and is now described. 

The most common method of dealing with uncertainty in VVUQ is through 
standard probability theory.  In this approach unknowns are represented by probability 
distributions, and rules of probability are used to combine the probability distributions in 
order to assess the uncertainty in the predictions derived from computer models.  This is 
the approach employed in this report.  The approach is capable of synthesizing most, if 
not all, of the uncertainties that arise in VVUQ, and it offers a straightforward and readily 
understood means of quantifying uncertainties in model predictions of physical QOIs.  
This choice is not meant as a judgment that alternative frameworks are invalid or lacking, 
but is meant to provide a single, relatively transparent framework to illuminate VVUQ 
issues. 

Two concerns are often raised with the probabilistic approach.  The first concern is 
the difference between epistemic and aleatoric probability and the combination of these 
two types of uncertainty.  Aleatoric probabilities arise from actual randomness in the real 
system, and epistemic probabilities typically arise from a lack of knowledge.  

 
 Example: Suppose that the manufacturing process for a weapon results in 10 

percent nonfunctional weapons; then each weapon randomly has a probability of 
failure of 0.1 (an aleatoric probability).  Alternatively, suppose that the weapon 
design is based partly on speculative science and the weapons cannot be physically 
tested.  It is judged that there is a 10 percent chance that the science is wrong, in 
which case none of the weapons would work.  Again each particular weapon has a 
probability of failure of 0.1 (an epistemic probability).  But, obviously, the 
ramifications of these two 0.1 probability statements are very different. 
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FIGURE 1.3  The joint probability distribution for the reliability of two weapons in a 
stockpile.  Left: Each weapon works or fails independently, with a 90 percent chance of 
working.  Right: A common failure mode gives a 90 percent chance that both weapons 
work.  In this case, either both weapons work or both fail.  

 
Although a single weapon in this example has a failure probability of 0.1 under 

either scenario, the joint probability distributions of failure for the weapons are very 
different.  In the aleatoric case, the weapons independently have a 0.1 probability of 
failure, while in the epistemic case they either all succeed or all fail together, with 0.1 
probability of failure.   Figure 1.3 shows the joint probability distribution of two weapons 
in these two different situations.  The joint distributions communicate the complete 
picture and clearly differentiate between the two situations.  The message here is that 
standard probability theory does properly distinguish between the two situations, but one 
must take care in communicating the result.  Summarizing a probabilistic description of a 
prediction with a single metric can be misleading.  For example, the chance of failure of a 
weapon randomly chosen from the stockpile does not address the question of whether or 
not there is an appreciable chance that the entire stockpile might fail.   

Many scientists are reluctant to use the same probability calculus to represent both 
knowledge uncertainty (epistemic probability) and true randomness (aleatoric 
probability).  This is a centuries-old debate in science and philosophy in which this report 
will not engage.  This report uses the standard probability calculus for both types of 
uncertainty to illustrate its points, while recognizing that in some applications there may 
be good reasons to take different approaches. 

The second concern often raised with respect to standard probability theory is that it 
is a “precise” theory, whereas probability judgments are often imprecise.  For instance, 
the precise statement in the above example—that there is a 10 percent chance that the 
science is wrong—can be questioned; might not a more accurate analysis yield 10.1 
percent or 10.01 percent?  Here there is less debate philosophically, in that probability 
judgments are indeed often imprecise.  There is no agreement, however, on how to 
combine imprecise probability judgments into an overall assessment of the uncertainty of 
predictions.  One option is to consider the “worst case” over all the possibilities that are 
not ruled out.  This worst case is often so conservative that it does not provide useful 
information.  However, when worst-case analysis is not overly conservative, it yields a 
powerful assessment of uncertainty. 

Although open to other possibilities, the committee holds the view that currently the 
use of standard probability modeling is often a reasonable mechanism for producing an 
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overall assessment of accuracy in prediction in VVUQ, and it provides a consistent 
framework in which this report can illustrate its points.  Interval descriptions, such as 
0.09 < x < 0.11, are treated in this report by conversion to standard probability 
distributions: for example, by treating p as being uniformly distributed over the interval 
(0.09, 0.11).  Other treatments are possible and in some cases may be preferable. 

 
 

1.6 BALL-DROP CASE STUDY 
 
To help clarify VVUQ concepts, the easily visualized phenomenon of dropping a 

ball from a tower can be used.  Experiments measure the time that it takes the ball to fall 
from different heights.  This simple example, described in Box 1.1, and discussed in this 
Chapter and in Chapter 5, provides a ready physical example for describing many of the 
main ideas of VVUQ.  This section describes the physical system, posits a simple model 
for system behavior, and indicates how various sources of uncertainty and bias can affect 
the model predictions.  It is also possible to explore the model in a manner that typifies 
many applications of physics and engineering and in a way that exposes how 
uncertainties arise in the resulting prediction for the QOI. These themes recur in many 
parts of the report. 
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1.6.1  The Physical System 

 
With respect to the physical system for the case study, a bowling ball is released 

from rest at a height h above the ground (see Figure 1.1.a in Box 1.1), and the time that it 
takes for the ball to reach the ground is recorded.  Drop heights of 10 m, 20 m, . . . ,60 m 
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BOX 1.1 
Dropping a Bowling Ball from a Tower 

 

     The time that it takes for a bowling ball to fall from a tower 100 
meters (m) high will be predicted by using experimental drop times 
obtained from a 60 m tower (Figure (a)).  Drop times are recorded for 
heights of 10, 20, . . . , 50 m, and a validation experiment of dropping a 
ball from 60 m is also conducted.  The uncertainty in the measured drop 
times is normally distributed about the true time with a standard 
deviation of 0.1 seconds (s).  The quantity of interest (QOI) is the drop 
time for the bowling ball at a height of 100 m.  Since the tower is only  
60 m high, a computational model is used to help make this assessment. 
     The conceptual model incorporates only acceleration due to 
gravity g, allowing the computational solution used here to be 
compared to an analytical solution for a verification assessment 
of  bowling ball drop times between 10 m and 100 m.   

     The physical constant g is 
assumed to be unknown, but 
between 8 and 12 m/s2 (light 
lines).  The five drop-time 
measurements (black dots; 
Figure (b) constrain the 
uncertainty about g to the 
probability density given by the 
dark line. 

g (m/s2)   
8         9         10         11        12 

(c) Initial and constrained 
uncertainty for gravity (g) 

     The drop times produced by 
the computational model (light 
lines in Figure (c) are shown for 
11 different values of g.  The 
experimental data are shown 
with error bars of + 2 standard  
deviations—the measurement error for the 60 m is not used.  
The constrained uncertainty for g results in a 95 percent 
prediction interval for the drop time (as a function of height) 
depicted by the dark region in Figure (b). 
     A validation experiment, dropping the bowling ball from 60 
m, is conducted so that the prediction can be compared to the 
measured drop time.  The drop-time measurement for 60 m 
(black dot in Figure (d)) is quite consistent with the prediction 
and its uncertainty.  
     A prediction with the uncertainty for the QOI (drop time at 
100 m) is given by the light line in Figure (d).  The uncertainty 
accounts for measurement error and parametric uncertainty.  
Numerical error and model discrepancy are not accounted for in 
this assessment. 
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are available from the tower.  Gravity acts on the ball, causing it to accelerate.  The goal 
is to predict how long it takes for the bowling ball to hit the ground, starting from a 
height of 100 m.  This drop time for a 100 m drop of a bowling ball is the QOI for this 
experiment.  To help address this question, a computational model (described below) and 
a number of experimentally measured drop times from different heights will be used.  But 
since the tower is only 60 m high, no higher drops are possible. 

 
1.6.2  The Model 

 
The simplest conceivable model for this system assumes that the bowling ball 

accelerates toward the ground at a constant acceleration given by the gravitational 
constant g (see Figure 1.1.b in Box 1.1).  For now, assume that the exact acceleration due 
to gravity is unknown—only that this acceleration is between 8 and 12 meters per second 
per second (m/s2).  Experiments in which the bowling bowl is dropped from different 
heights will help to reduce this uncertainty.  For now, uncertainty about g is described by 
a uniform prior distribution whose range is from 8 m/s2 to 12 m/s2 (see Figure 1.1.c, light 
lines, in Box 1.1).   

 
1.6.3 Verification 

 
The mathematical model is sufficiently simple and the drop time can be computed 

analytically for any drop height, as long as the value for g is supplied.  It is far more 
common to solve a mathematical system using computational approaches that produce an 
approximate solution to the system (Morton and Mayers, 2005; Press et al., 2007).  
Assessing the quality of this approximation is one of the key functions of verification.  
Much of the work in verification focuses on quantifying or bounding the difference 
between computationally and mathematically derived solutions.  In most applications, 
this quantification is challenging because the mathematical solution is not available. 

 
1.6.4  Sources of Uncertainty 

 
A number of uncertain quantities that affect the eventual prediction uncertainty for 

the QOI can be identified.  First and most important is the uncertain constant, g—the 
acceleration due to gravity.  Uncertainty regarding this parameter leads to uncertainty in 
predictions (see Figure 1.1.d in Box 1.1).  In other applications, the assessed accuracy of 
the computational model relative to the mathematical model being solved is an important 
source of uncertainty (but not here because the mathematical model is relatively 
straightforward). 

The nature, number, and accuracy of the experimental measurements also affect 
prediction uncertainty.  Here the difference between measured and actual drop time 
should be within 0.2 seconds 95 percent of the time.  These deviations, sometimes 
described as measurement “errors,” may be due to the timing process, or due to variations 
in the initial position and velocity of the bowling ball as it is released for the drops.  The 
measurement errors are assumed to be independent, directly affecting the updated, or 
posterior, uncertainty for g.  This would not be the case if, for instance, the stopwatch 
being used ran slightly fast.  In that case, all the measured drop times would be 
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systematically low.  If it is known that such systematic errors may exist in the 
measurement process, they can be accounted for probabilistically.  When such systematic 
effects go undetected, obtaining appropriate prediction uncertainties is more difficult. 

Inadequacies in the model may also contribute uncertainty to drop-time predictions.  
This simple model does not account for effects due to air friction.  Fortunately, a bowling 
ball, at the velocities obtained in these experiments, is rather insensitive to the effects of 
air friction.  This would not be the case if a basketball was used instead.  Regardless, if 
very high accuracy is required for the eventual prediction, then additional experiments, 
more accurate measurements, and/or a more accurate model may be required. 

 

1.6.5 Propagation of Input Uncertainties 

 
One might also like to carry out an uncertainty analysis in which a distribution on 

the inputs is propagated through the simulation model to give uncertainty about the 
outputs.  This is done in Box 1.1 for both the initial and the constrained distributions for 
g.  Such propagation analyses, which can be carried out in principle using a Monte Carlo 
simulation, can be very time-consuming when the model is computationally demanding.  
Dealing with such computational constraints when exploring how the model outputs are 
affected by input variations is considered in more detail in Chapter 4, “Emulation, 
Reduced-Order Modeling, and Forward Propagation.” 

 
1.6.6 Validation and Prediction 

 
At this point, the experimental observations need to be combined with the 

computational model in order to obtain more reliable uncertainties regarding the 
simulation-based prediction for the QOI—the drop time for the bowling ball at 100 m.  
The drop times can be used to constrain the uncertainty regarding g to give more reliable 
predictions and uncertainties.   

In principle, this inference problem can be tackled using nonlinear regression, from 
either a likelihood perspective (Seber and Wild, 2003) or a Bayesian perspective 
(Gelman, 2004).  In fact, Figure 1.1.c in Box 1.1 shows the posterior distribution for g, 
resulting from using the experimental measurements to reduce uncertainty, and the 
posterior predictions for the drop times of the bowling ball as a function of height.  Here 
the prediction uncertainty (given by the dark region in Figure 1.1.d in Box 1.1) is due to 
uncertainty in the gravitational constant g.  However, this analysis has some drawbacks:  

 
  It requires, at least in principle, many evaluations of the computational model;  
  It assumes that the computational model reproduces reality when the appropriate 

value of g is used; and 
  It does not account, in any formal way, for the increased uncertainty that one 

should expect in predicting the 100 m drop time when only data from heights of 
60 m or less are available. 

 
These issues highlight some of the fundamental challenges for the mathematical 

foundations for VVUQ.  Methods for dealing with limited numbers of simulation runs 
have been a focus of research in VVUQ for the past few decades.  However, relatively 
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few approaches for quantifying prediction uncertainty when the computational model has 
deficiencies have been proposed in the research literature.  Predicting the drop time for 
the bowling ball from 100 m is a good example of how complicated things can get, even 
for an example as basic as this one. 

A helpful experiment—called a validation experiment—tries to assess the model’s 
capability for making a less drastic extrapolation.  Here, experiments consisting of drop 
heights of 10 m, . . . , 50 m are used, along with the model, to make a prediction with 
uncertainty for a drop of 60 m.  The prediction and measured results are shown in Figure 
1.1.d in Box 1.1, showing strong agreement between the prediction and experimental 
measurement.  Still, the confidence that one should have in the model’s prediction for a 
drop of 100 m remains hard to quantify in any formal manner. 

 
1.6.7  Making Decisions 

 
The ability to model and quantify uncertainties of this system can be used to make 

decisions about how knowledge of the physical system can be improved.  Specifically, 
what actions will most effectively reduce the uncertainty in predicting the drop time for 
the bowling ball at 100 m?  Actions might include carrying out new experiments, 
carrying out additional simulations, measuring initial conditions more accurately, 
improving the experimental timing capabilities, or improving the computational model.  
For example, the relative merits between extending the tower to 70 m or improving the 
experimental timing accuracy could be assessed quantitatively, given the available 
information, costs, and how the new changes are likely to improve uncertainties. 
 
 
1.7 ORGANIZATION OF THIS REPORT 
 

Following this introductory chapter is the cataloging and discussion of the elements 
briefly listed in it.  Chapter 3 addresses code and solution verification.  Chapter 4 
addresses the propagation of input uncertainties through the computational model to 
quantify the resulting uncertainties in calculated QOIs and to carry out sensitivity 
analyses.  Chapter 5 tackles the complex topics of validation and prediction.  Chapter 6 
addresses the use of computational models and VVUQ to inform important decisions.  
Chapter 7 discusses today’s best practices in VVUQ and identifies research that would 
improve mathematical foundations of VVUQ.  It also discusses VVUQ-related issues in 
education and offers recommendations for educational changes that would enhance 
VVUQ capabilities among those who will need to employ them in the future. 
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2     Sources of Uncertainty 

2.1   INTRODUCTION 

The development of a computational model to predict the behavior of a physical system 
requires a number of choices from both the analyst, who develops the computational model, and 
the decision maker, who uses model results to inform decisions.1  These choices, informed by 
expert judgment, mathematical and computational considerations, and budget constraints, as well 
as aspects of the application at hand, all impact how well the computational model represents 
reality.  Each of these choices has the potential to push the computational model away from 
reality, impacting the validation assessment and contributing to the resulting prediction 
uncertainty of the model. 

In approaching a system whose performance requires a quantitative prediction, the analyst 
will typically need to make (or at least consider) a series of choices before the analysis can get 
underway.  In particular, thought needs to be given to the following: 

 
 Relevant or interesting measures of the quantity of interest (QOI) from the point of view 

of any proposed application or decision; 
 The underlying quantitative model or theory to use for representing the physical system; 
 The adequacy of that underlying model or theory for the proposed application; 
 The degree to which the simulation code, as implemented, approximates the results of the 

underlying model or theory; and 
 The fidelity with which the system is represented in the code. 

 
The last four choices in this list are prime sources of analytic uncertainty.  In broad terms, 

the analyst will be uncertain about (1) the choice of theoretical model to use for predicting the 
QOI, (2) the inherent adequacy of the theoretical model(s) chosen to predict the QOI, and (3) the 
degree to which any finite computational implementation of a given model for a given problem 
approximates the actual model solution for that problem.  To proceed to a more fine-grained 
understanding and taxonomy of sources of analytic uncertainty and error, it will be helpful to 
consider a specific situation—one that is simplified sufficiently to be tractable and yet complex 
enough to be relevant to the purposes of this study.  Tracing the series of analytic choices above 
in the context of a particular example should help illustrate where potential areas of analytic 
uncertainty and error can enter into a representative application of simulation-based prediction.  

 
2.2 PROJECTILE-IMPACT EXAMPLE PROBLEM 
 

Consider the situation depicted in Figure 2.1, which is an example adapted from Thompson 
(1972).  The system under consideration consists of a cylindrical aluminum rod impacting the 
center of a cylindrical aluminum plate at high speed.  This kind of system could be informative 
when trying to understand the behavior of a projectile impacting armor. 
                                                 
1 The terms analyst and decision maker refer to the roles that the two parties fulfill. Someone who is a decision 
maker in one context may well be an analyst in another.  For example, scientists are often asked to recommend 
courses of action with regard to funding research projects.  In that role, those scientists will be consumers, rather 
than producers, of simulation-based information. 
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 Figure Permission Pending 
 
 
 
 
      
FIGURE 2.1  Aluminum rod impacting a cylindrical aluminum plate.  SOURCE: Example 
adapted from Thompson (1972). 

At the start of the problem, the cylindrical rod is moving downward at high velocity and is 
just touching the thick plate, as indicated by the figure on the left.  The figure on the right 
represents a “slice” through the center of the system and uses color to represent density. 

Assume that interest centers on the problem of predicting the behavior of the rod and plate 
system.  First, it must be decided which aspects of the system behavior are required to be 
predicted—the QOIs.  There are several possibilities: the depth of penetration of the plate as a 
function of impactor velocity, the extent of gross damage to the plate, the fine-scale 
metallographic structure of the plate after impact, the amount of plate material ejected backward 
after the rod impact, the time-dependent structure of loading and unloading waves during the 
impact, and so on.  In general, the number of possible QOIs that could be considered as 
reasonable candidates for prediction is large.  Which aspects are important is application-
dependent—depending, for example, on whether application focus is on improving the 
performance of the projectile or of the armor plate—and will influence to a large degree the 
simulation approach taken by the analyst.   
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A question that emerges at this stage is the degree of accuracy to which the prediction 
needs to be made.  This also depends on the application under consideration.  In this rod and 
plate example, it may be that the primary QOI that is important is the depth of penetration of the 
rod as a function of impactor velocity, and that the depth only to within a couple of millimeters is 
the only QOI needed.  Having specified the system under consideration, the QOI(s) that require 
prediction, and the accuracy requirements on that prediction, the analyst can proceed to survey 
the possible theories or models that are available to estimate the behavior of the system.  This 
aspect of the problem usually requires judgment informed by subject-matter expertise.  In this 
example, the analyst is starting with the equations of solid mechanics.  Further, the analyst is 
assuming that typical impactor velocities are sufficiently large, and the resulting pressures 
sufficiently high, that the metal rod and plate system can be modeled as a compressible fluid, 
neglecting considerations of elastic and plastic deformation, material strength, and so on.  This is 
the kind of assumption that draws on relevant background information.  Most moderately 
complex applications rely on such background assumptions (whether or not they are explicitly 
stated).  The specification of the conservation (“governing”) equations is given in Box 2.1.  The 
thermodynamic development is not described in any detail, but the problem of specifying 
thermodynamic properties requires assumptions about model forms—in this example, shown in 
Box 2.1.  The governing equations and other assumptions combine to determine the 
mathematical model that will be employed, and the specific assumptions made influence the 
predicted deformation behavior at a fundamental level.  The range of validity of any particular 
set of assumptions is often far more limited than the range of validity of the governing equations.  
The subsequent predicted results are bounded by the most limiting range of validity.  

At this point, strategies for simulating these equations numerically have to be considered—
that is, the computational model must be specified.  Accomplishing this is far from obvious, and 
it is greatly complicated by the existence of nonlinear wave solutions (particularly shock waves) 
to the equations of fluid mechanics.  The details of numerical hydrodynamics will not be 
explored here, but the important point is that the specification of a well-posed mathematical 
model to represent the physical system is usually just the beginning of any realistic analysis.  
Strategies for numerically solving the mathematical model on a computer involve significant 
approximations affecting the computed QOI.  The errors resulting from these approximations 
may be quantified as part of verification activities.  Even after a strategy for solving the 
nonlinear governing equations numerically is chosen, the thermodynamic relations mentioned 
above have to be computed somehow.  This introduces additional approximations as well as 
uncertain input parameters, and these introduce further uncertainty into the analysis. 

 
BOX 2.1  

Equations for Conservation of Mass, Momentum, and Energy 
 

To be explicit about the form that the rod and plate analysis might take, it is useful to write 
the governing equations of continuum mechanics.  These are laws of conservation of mass, 
momentum, and energy:1 
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In these equations, ρ denotes the mass density, E the internal energy per unit volume, uk is the 
velocity vector written in Cartesian coordinates, and τkl is the stress tensor, again written in 
Cartesian coordinates.  k denotes the differentiation with respect to the kth spatial direction.   
The strain-rate tensor in the energy equation is given by:  

 
and the stress tensor in the momentum and energy equations by: 

 
These equations are quite general and do not depend on assumptions about elastic or plastic 
deformation, material strength, and the like.  They are simply conservation laws, and their 
introduction is accompanied by very little uncertainty, at least for this application. 
However, the specific form taken by the dissipative component of the stress tensor, diss, relies on 
approximations, particularly involving the thermodynamic specification of the system.  If, 
following the analysis mentioned above, it is decided that the rod and plate system will be 
modeled as a viscous fluid, then the viscous component of the stress tensor can be expressed as a 
function of the shear and bulk viscosities, s and : 

 
These viscosities (and the internal energy) must be expressed in terms of independent 
thermodynamic variables, which require approximations that introduce still more uncertainty 
into the predicted quantities of interest. 
1 For these equations and notable conventions, see Wallace (1982). 

 
Suppose that both a numerical hydrodynamics code (for addressing the governing 

equations) and the relevant thermodynamic tables (for addressing the thermodynamic 
assumptions) are readily available.  The next issue to consider is the resolution of the spatial grid 
to use for discretizing the problem.  Finite grid resolution introduces numerical error into the 
computed solution, which is yet another source of error that contributes to the prediction 
uncertainty for the QOIs.   The uncertainty in the QOIs due to numerical error is studied and 
quantified in the solution verification phase of the verification, validation, and uncertainty 
quantification (VVUQ) process.  After having made all these choices, the simulation can 
(finally) be run.  The computed result is shown in Figure 2.2. 
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FIGURE 2.2  Aluminum rod at the end of simulation.  The figure shows a slice through the 
system (which began as two cylinders).  Color represents density.  SOURCE: Adapted from 
Thompson (1972). 

 
The code predicts that the rod penetrates to a depth of about 0.7 cm in the plate at the time 

shown in the simulation.  The result also shows strong shock compression of the plate that 
depends in complicated ways on the location within the plate.  Finally, there is evidence of 
interesting fine-scale structure (due to complex interactions of loading and unloading waves) on 
the surface of the plate. 

Any, or all, of these results may be of interest to both the analyst and the decision maker.  
The exact solution of the mathematical model cannot be obtained for this problem because the 
propagation of nonlinear waves through real materials in realistic geometries is generally not 
solvable analytically.  Had the analyst been unable to run the code, he or she might still have 
been able to give an estimate of the QOI, but that estimate would, most likely, have been vastly 
more uncertain—and less quantifiable—than an estimate based on a reasonably accurate 
simulation.  A primary goal of a VVUQ effort is to estimate the prediction uncertainty for the 
QOI, given that some computational tools are available and some experimental measurements of 
related systems are also available.  The experimental measurements permit an assessment of the 
difference between the computational model and reality, at least under the conditions of the 
available experiments, a topic that is discussed throughout Chapter 5, “Model Validation and 
Prediction.”  Note that uncertainties in experimental measurements also impact this validation 
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assessment.  An important point to realize, for the purposes of this discussion, is that the 
computational-model results all depend on the many choices made in developing the 
computational model, each potentially pushing the computed QOI away from its counterpart 
from the true physical system.  Different choices at any of the stages discussed above would 
produce different results from those pictured in Figure 2.2.  The results, however, are not equally 
sensitive to every choice—some choices have greater influence than others on the computational 
results.  A major goal of any UQ effort is to disentangle these sensitivities for the problem at 
hand.  The problem discussed here exhibits many of the sources of uncertainty that are likely to 
be present in most computational analyses of physical or engineered systems.  It is worthwhile to 
extract some of the salient themes from this cursory overview. 
 
 
2.3  INITIAL CONDITIONS 
 

One uncertainty that the discussion of this example problem did not emphasize is 
uncertainty in the initial data for the problem.  It was simply assumed that the initial dimensions, 
velocities, densities, and so forth for the combined rod and plate system were known arbitrarily 
well.  Many problems that are commonly simulated do not enjoy this luxury.  For example, 
hydrodynamic simulations of incompressible turbulent flows often suffer from large 
uncertainties in the initial conditions of the physical system.  In principle, these uncertainties 
must be parameterized in some way and then processed through the simulation code so that 
different parameter settings describe different initial conditions.  If the rest of the modeling 
process is perfect—something that the above discussion indicates is far from likely—uncertainty 
in the initial conditions will be the dominant contributor to prediction uncertainty in the QOI.  In 
this case, methods mentioned in Chapter 4, “Emulation, Reduce-Order Modeling, and Forward 
Propagation,” for the propagation of input uncertainty would describe the prediction uncertainty.  
The main thrust of the preceding discussion of the example problem has been to point out the 
many possible additional sources of uncertainty over and above uncertainty in the initial 
conditions. 

 
Finding:  Common practice in uncertainty quantification has been to focus on the propagation of 
input uncertainties through the computational model in order to quantify the resulting 
uncertainties in output quantities of interest, with substantially less attention given to other 
sources of uncertainty.    
 

There is a need for improved theory, methods, and tools for identifying and quantifying 
uncertainties from sources other than uncertain computational inputs and for aggregating the 
uncertainties that arise from all sources. 
 
 
2.4  LEVEL OF FIDELITY 
 

Fidelity of the numerical representation of a complex system is another aspect of many 
simulation-based predictions that is not well exemplified by the preceding example problem.  
The geometry of a cylindrical rod impacting a plate is not a particularly difficult geometry to 
capture in modern computer codes.  Many other problems of interest, however, have significant 
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difficulties in capturing all the geometric intricacies of the real system.  In many cases, rather 
complex three-dimensional geometries are simplified to two-, one-, or even zero-dimensional 
numerical representations.2. But even if the full dimensionality of the problem is retained, it is 
often the case—especially for intricate systems like a car engine—that many of the pieces of a 
complex system have to be either ignored or greatly simplified in the code just to get the problem 
generated or for the code to run stably in a reasonable amount of time.   

These decisions are present in most simulation analyses.  They are typically made on the 
basis of expert judgment.  One method of determining the effect of a judgment regarding what to 
neglect or simplify is to try to include a more complete representation and see if it affects the 
answer significantly.  However, if every aspect of the real world could be accurately represented, 
that is generally what the analyst would do; so in some cases, more detailed modeling is not 
feasible.  An alternative method is to simplify the representation sufficiently that it can be 
accommodated by the code and computer that are available, and accept the impact that the 
approximate representation has on the simulation output.  This is often the only reasonably 
available strategy for getting an answer and so is frequently the one taken.  However, this 
method also leaves a great deal of latitude to the analyst in making choices on how to represent 
the system numerically and on judging whether or not the simplifications compromise the 
simulation results or provides information of utility to the decision maker. 

 
 

2.5  NUMERICAL ACCURACY 
 

As mentioned briefly in the discussion of the example problem, every analyst confronts the 
issues of uncertainty in the numerical solution of the equations embodied in the code.  Three 
different broad, but potentially overlapping, categories of uncertainty can be distinguished: 

 
 Inadequate algorithms, 
 Inadequate resolution, and 
 Code bugs. 
 

Algorithmic inadequacies and resolution inadequacies stem from a common cause: most 
mathematical models in computational science and engineering are formulated using continuous 
variables, and so have the cardinality of the real numbers; but all computers are finite.  In most 
cases, derivatives are finite differences and integrals are finite sums.  Different algorithms for 
approximating, say, a differential equation on a computer will have different convergence 
properties as the spatial and temporal resolution is increased.  Because the spatial and temporal 
resolution or number of Monte Carlo samples of a probability distribution is generally fixed by 
the computational hardware available, certain algorithms will usually be more appropriate than 
others.  There may be additional factors that also favor one algorithm over another.  It is a time-
honored warning, though, that every algorithm, no matter how well it performs generally, may 
have an Achilles’ heel—some weakness that will cause it to stumble when faced with a certain 
problem.  Unfortunately, these weaknesses are usually found in one of two ways: first, by 

                                                 
2 An example of a much-used zero-dimensional code is the ORIGEN2 nuclear reactor isotope depletion code.  See 
A.G. Croff (1980). 
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comparing the code against a problem with a known solution; second, by comparing the code 
against reality.  In either case, checks are made to see where the code is found wanting.  The 
problem with checking against a known solution—while undoubtedly a useful and important 
procedure—is that it is very difficult to determine whether or not the weakness thus revealed in 
the simple problem will play an important role in the true application.  Again, one should note 
that any judgments made by the analyst on how to factor in algorithmic issues are typically both 
complex and somewhat subjective.   

Resolution inadequacies are slightly different, in that they can be checked, at least in 
principle, by increasing (or decreasing) the spatial and temporal resolution to estimate the impact 
of resolution on the simulation result.  Notice, again, that here the analyst will be restricted by 
computational expense and, perhaps, by intrinsic algorithmic limitations.   

Finally, code bugs are the rule, not the exception, in all codes of any complexity.  Software 
quality engineering and code verification are finely developed fields in their own right.  Nightly 
regression suites (software to test whether software changes have introduced new errors), 
manufactured solutions,3 and extensive testing are all attempts to ensure that as many of the lines 
of code as possible are error-free.  It may be trite but is certainly true to say that a single bug may 
be sufficient to ensure that the best computational model in the world, run on the most capable 
computing platform, produces results that are utterly worthless. 

  
Finding:  The VVUQ process would be enhanced if the methods and tools used for VVUQ and 
the methods and algorithms in the computer model were designed to work together.  To facilitate 
this, it is important that code developers and model developers learn the basics of VVUQ 
methodologies and that VVUQ method developers learn the basics of computational science and 
engineering.  The fundamentals of VVUQ, including strengths, weaknesses, and underlying 
assumptions, are important components in the education of analysts who are responsible for 
making predictions with quantified uncertainties. 
 
 
2.6  MULTISCALE PHENOMENA 
 

Systems that require computational simulation to predict their evolution in time and space 
are most frequently intrinsically nonlinear.  Fluid dynamics is a paradigmatic example.  The 
hallmark of a nonlinear system is that the dynamics of the system couple many different degrees 
of freedom.  This phenomenon is seen in the example problem of a rod impacting a plate.  Steady 
nonlinear waves, such as shocks, critically depend on the nonlinearity of the dynamical 
equations.  A shock couples the large-scale motions of the solid or fluid system to the small-scale 
regions where the work done by the viscous stresses are dissipated.  Multiscale phenomena 
always complicate a simulation.  As was seen very briefly above, the net effect of the 
nonlinearity is to present the modeler with a choice of options:  

 
 Option 1: Directly model all the scales of interest, or  

                                                 
3 Manufactured solutions refers to the process of postulating a solution in the form of a function, followed by 
substituting it into the operator characterizing the mathematical model in order to obtain (domain and boundary) 
source terms for the model equations.  This process then provides an exact solution for a model that is driven by 
these source terms (Knupp and Salari, 2003; Oden, 1994). 
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 Option 2: Choose a cutoff scale—that is, a scale below which the phenomena will 
not be represented directly in the simulation, replacing the physical model with 
another model that is cutoff-dependent. 

   
Each alternative has associated advantages and disadvantages.  Option 1 is initially 

appealing, but it usually dramatically increases the computational expense of even a simple 
problem, and the time spent in setting up such a simulation might be unwarranted for the task at 
hand.  Moreover, it often introduces additional parameters, governing system behavior at 
different scales, that need to be calibrated beforehand, frequently in regimes where those 
parameters are poorly known.  The uncertainties induced by these uncertain parameters might 
exceed the additional fidelity that one could expect from a more complete model.  Option 2, on 
the other hand, reduces the computational expense by limiting the degrees of freedom that the 
simulation resolves, but it usually involves the construction of physically artificial numerical 
models whose form is, to some extent, unconstrained, and which usually have their own 
adjustable parameters.  In practice, such effective models are almost always tuned, or calibrated, 
to reproduce the behavior of selected problems for which the correct large-scale behavior is 
known.  The example problem presents the analyst with this choice.  In keeping with the usual 
practice in compressible-fluid numerical hydrodynamics, Option 2 was followed.  The dynamics 
were modeled with an effective numerical model, an artificial viscosity. 

Each of these options presents its own type of uncertainty. 
 
 

2.7  PARAMETRIC SETTINGS 
 

If it is assumed that the form of the small-scale physics is known (Option 1), then the main 
residual uncertainty of Option 1 is parametric, that is, due to uncertainty about the correct values 
to assign to the parameters in the correct physics model.  The fortunate aspect of parametric 
uncertainty is that many methods (e.g., Bayesian, maximum-likelihood) of parameter calibration 
are available for estimating parameters from experimental data, if such data are available.  
Again, however, one has to compare the computational expense involved in the direct simulation 
of many different length scales with the expense of obtaining additional data. 

 
 

2.8  CHOOSING A MODEL FORM 
 
Option 2, choosing a cutoff scale, introduces a potentially important contributor to model 

discrepancy: model-form uncertainty. When an effective model is created to mimic the physics 
of the length scales that are deleted from the simulation, the form of the model—the types of 
terms that enter in the equations—is usually not fully determined by the requirement that the 
effective model reproduce the physics of a selected subset of large-scale motions.  For example, 
the von Neumann-Richtmyer artificial viscosity method (Von Neumann and Richtmyer, 1950) 
(and its descendants) is a way of introducing some effects of viscosity into simulations based on 
equations that do not otherwise represent the root causes of viscosity.  These methods are a good 
illustration of potential model-form error, in that they can accurately propagate planar shocks in 
a single material—the physics that they are designed to replicate—while failing (in different 
ways) to model higher-dimensional, or multimaterial, hydrodynamic situations.  
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A typical strategy to use in constructing effective models is to require that the effective 
model obey whatever symmetries happen to be present in the full model.  In fluid dynamics, for 
example, one would prefer to have a subgrid model possess the symmetries of the full Navier-
Stokes equations.4  Often, however, retaining the full symmetry group is not practicable.  Even 
when it is, however, the symmetry group still usually permits an infinite number of possible 
terms that may satisfy the symmetry requirements.  Which of these terms need to be retained is, 
unfortunately, often problem-dependent, a fact that can create difficulties for general-purpose 
codes.  Moreover, methods for expressing model-form error, and assessing its impact on 
prediction uncertainty, are in their infancy compared to methods for addressing parametric 
uncertainty.  Sometimes, however, it is possible to parameterize a model-form uncertainty, 
allowing it to be treated as a parametric uncertainty. This type of reduction can occur by using 
parameters to control the appearance of the terms in an effective model after the imposition of 
symmetry requirements. 
 
 
2.9  SUMMARY 
 

The simplified, but still representative, simulation problem discussed here is presented in 
the hope of identifying at least some sources of error and uncertainty in model-based predictions.  
It should be clear that the impact of including these different effects is to, on the whole, push a 
computed QOI away from its counterpart in the physical system, increasing the resulting 
prediction uncertainty.  However, the manner in which this increase occurs will depend 
considerably on the details of the simulation and uncertainty models under consideration.  Some 
uncertainties will add in an independent manner; others may have strong positive or negative 
correlations.  It is important to realize that some uncertainties may be limited by the availability 
of relevant experimental data.  The most straightforward example occurs when one has data that 
constrain the possible values of one or more input parameters to the simulation code being used 
in the analysis.  Clearly, the details of such interactions and constraints and the structure of the 
analysis are closely interrelated.  The sources of uncertainty and error identified here, while 
almost certainly not an exhaustive list, will likely be present in most simulation-based analyses.  
Developing quantitative methods to address such a wide variety of uncertainty and error also 
presents difficult challenges, and exciting research opportunities, to the verification and 
validation (V&V) and UQ communities. 

 
 

2.10 CLIMATE-MODELING CASE STUDY 
 

The previous discussion noted that uncertainty is pervasive in models of real-world 
phenomena, and climate models are no exception.  In this case study, the committee is not 
judging the validity or results of any of the existing climate models, nor is it minimizing the 
successes of climate modeling.  The intent is only to discuss how VVUQ methods in these 
models can be used to improve the reliability of the predictions that they yield and provide a 
much more complete picture of this crucial scientific arena. 

                                                 
4 These symmetries are discussed in Frisch (1995), Chap. 2. 
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Climate change is at the forefront of much scientific study and debate today, and UQ 
should be central to the discussion.  To set the stage, one of the early efforts at UQ analysis for a 
climate model is described, from Stainforth et al. (2005).  This study considered two types of 
input uncertainties for climate models: uncertainty in the initial conditions for the climate model 
(i.e., the posited initial state of climate on Earth, which is very imprecisely known, particularly 
with respect to the state of the ocean) and uncertainty in the climate model parameters (i.e., 
uncertainty in coefficients of equations defining the climate model, related to unknown or 
incompletely represented physics).  It is standard in weather forecasting, and relatively common 
in climate modeling, to deal with uncertainty in the initial conditions by starting with an 
ensemble (or set) of possible initial states and propagating this ensemble through the model.  It is 
less common to attempt to deal with the uncertainty in the model parameters, although this has 
been considered in Forest et al. (2002) and Murphy et al. (2004), for example.  The climate 
model studied was a version of a general circulation model from the United Kingdom Met 
Office5 consisting of the atmospheric model HadAM36 coupled to a mixed-layer ocean.  Out of 
the many parameters in the model, six parameters—relating to the way clouds and precipitation 
are represented in the model—were varied over three plausible values (chosen by scientific 
experts).  For emphasis, note that the standard output that one would see from runs of this 
climate model would be from the run that uses the central value of each of the three possible 
parameters.  Figure 2.3(b) (from Stainforth et al. [2005]) indicates the effect of this parameter 
uncertainty in the prediction of the effect of CO2-doubling on global mean temperature change 
over a 15-year period.  This discussion does not consider the calibration and control phases of 
the analyses, but note the considerable uncertainty in the final prediction of global mean 
temperature change at the end of the final CO2-doubling phase.  If the climate model were 
simply run at its usual setting for the parameters, one would obtain only one result, 
corresponding to an increase of 3.4 degrees.  Note also that the initial state of the climate is 
unknown; to reflect this, a total of 2,578 runs of the climate model were made, varying both the 
model parameters and the initial conditions.  The uncertainty in the final prediction of global 
mean temperature is then indicated by the larger final spread in Figure 2.3(a).   

 

                                                 
5 See .  Accessed August 19, 2011. www.metoffice.gov.uk
6 See Pope, Gallani, Rowntree, and Stratton (2000).  
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FIGURE 2.3  After calibration and control phases, the effect on global mean temperature of 15 
years of doubling of CO2 forcing is considered (a) when both initial conditions and model 
parameters are varied; (b) when only model parameters are varied.  SOURCE: Stainforth et al., 
2005. 
 

This discussion only scratches the surface of UQ analysis for climate change.  The 
variation allowed in this study in the model parameters was modest, and only six of the many 
model parameters were varied.  Uncertainty caused by model resolution and incorrect or 
incomplete structural physics (e.g., the form of the equations) also needs to be considered.  The 
former could be partially addressed by studying models at differing resolutions, and the latter 
might be approached by comparing different climate models (see, e.g., Smith et al. [2009]); it is 
quite likely, however, that differing climate models make many of the same modeling 
approximations, and, because of the finite resolution inherent in today’s computers, can only 
imperfectly resolve difficult topological features.  The extent of the effect of chaotic behavior is 
also poorly understood in climate change (the dust bowl of the 1930s may well have been a 
chaotic event that would not appear in climate models—see Seager et al. [2009]), regional effects 
are likely to be even more variable, and uncertainty as to future significant changes in forcing 
parameters (e.g., the actual level of CO2 increase) should also be taken into account.  Of course, 
future CO2 levels depend on human action, which adds more difficulties to an already complex 
problem. 

 

2.10.1 Is Formal UQ Possible for Truly Complex Models? 

 
The preceding case study provides a useful venue for elaboration on a more general issue 

concerning UQ that was raised by committee discussions with James McWilliams (University of 
California, Los Angeles), Leonard Smith (London School of Economics), and Michael Stein 
(University of Chicago).  The general issue is whether formal validation of models of complex 
systems is actually feasible.  This issue is both philosophical and practical and is discussed in 
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greater depth in, for example, McWilliams (2007), Oreskes et al. (1994), and Stainforth et al. 
(2007).  As discussed in this report, carrying out the validation process is feasible for complex 
systems.  It depends on clear definitions of the intended use of the model, the domain of 
applicability, and specific QOIs.  This is discussed further in Chapter 5, “Model Validation and 
Prediction.”   

Several factors make uncertainty quantification for climate models difficult.  These 
include: 

 
1. If the system is hugely complex, the model is, by necessity, only a rough approximation 

to reality.  That this is the case for climate models is indicated by the difficulty of 
simultaneously tuning climate models to fit numerous outputs; global climate predictions 
can often be tuned to match various statistics from nature, but then will be skewed for 
others.  Formally quantifying the uncertainty caused by all of the simplifying 
assumptions needed to construct a climate model is daunting and involves the 
participation of people—not just the use of software—because one has to vary the model 
structure in meaningful ways.  One must understand which simplifying assumptions that 
were made in model construction were rather arbitrary and have plausible alternatives.  

Another fundamental challenge is that the resulting variations in model predictions 
do not naturally arise probabilistically, so that it is unclear how to describe the 
uncertainty formally and to combine it with the other uncertainties in the problem.  For 
the latter, it might be practically necessary to use a probabilistic representation, but an 
understanding of the limitations or biases in such an approach is needed. 

2. Simultaneously combining all of the sources of uncertainty relating to climate models in 
order to assess the uncertainty of model predictions is highly challenging, both at the 
formulation level and in technical implementation.7   

3. There is a need to make decisions regarding climate change before a complete UQ 
analysis will be available.  This, of course, is not unique to climate modeling, but is a 
feature of other problems like stewardship of the nuclear stockpile. This does not mean 
that UQ can be ignored but rather that decisions need to be made in the face of only 
partial knowledge of the uncertainties involved. The “science” of these kinds of decisions 
is still evolving, and the various versions of decision analysis are certainly relevant. 

 
2.10.2 Future Directions for Research and Teaching Involving UQ for Climate Models 
 

In spite of the challenges in the formal implementation of UQ in climate modeling, the 
committee agrees that understanding uncertainties and trying to assess their impact is a crucial 
undertaking.  Some future directions for research and teaching that the committee views as 
highly promising are the following: 

 
1. It is important to instill an appreciation that modeling truly complex systems is a lengthy 

process that cannot proceed without exploring mathematical and computational 
alternatives.  Instead, it is a process of learning the behavior of the system being modeled 
and understanding limitations in the ability to predict such systems.   

                                                 
7 E.g., Knutti, R., R. Furer, C. Tebaldi, J. Cermak, and G.A. Mehl. 2010. Challenges in Combining Projections in 
Multiple Climate Models. Journal of Climate 23(10):2739-2758. 
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2. One must recognize that it is often possible to perform formally UQ only on part of a 
complex system and that one should develop ways in which this partial UQ can be used.  
For instance, one might state bounds on the predictive uncertainty arising from the partial 
UQ and then list the other sources of uncertainty that have not been analyzed.  And, as 
always, the domain of applicability of the UQ analysis must be stated—for example, it 
may be that the assessment is only valid for predictions on a continental scale and for a 
horizon of 20 years.  This recognition is even more important when one realizes that even 
a complex system such as a climate model is ultimately itself just a component of a more 
complex system, involving paleoclimate models, space-time hierarchical models, and so 
on. 

3. There is a tendency among modelers to always use the most complex model available, 
but such a model can be too expensive to run to allow for UQ analysis.  It would be 
beneficial to instill an appreciation that use of a smaller model, together with UQ 
analysis, is often superior to a single analysis with the most complex model.  In weather 
forecasting, for instance, it was discovered that running a smaller model with ensembles 
of initial conditions gave better forecasts than those from a single run of a bigger model.  
This discovery has carried over to some extent in climate modeling—climate models are 
kept at a level of complexity wherein an ensemble of initial conditions can be considered, 
but allowance for UQ with other uncertainties is also needed. 
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3 Verification  

 

3.1 INTRODUCTION 

 
In Chapter 1, verification is defined as follows: 
 
Verification:  the process of determining how accurately a computer program 

(“code”) correctly solves the equations of a mathematical model.  This includes 
code verification (determining whether the code correctly implements the 
intended algorithms) and solution verification (determining the accuracy with 
which the algorithms solve the mathematical model’s equations for specified  
quantities of interest [QOIs]). 

 
In this chapter verification is discussed in detail.  The chapter begins with overarching 

remarks, then discusses code verification and solution verification, and closes with a summary of 
verification principles.   

Many large-scale computational models are built up from a hierarchy of models, as is 
illustrated in Figure 1.1.  Opportunities exist to perform verification studies that reflect the 
hierarchy or collection of these models into the integrated simulation tool.  Both code and 
solution verification studies may benefit by taking advantage of this composition of submodels 
because the submodels may be more amenable to a broader set of techniques.  For example, code 
verification can fruitfully employ “unit tests” that assess whether the fundamental software 
building blocks of a given code correctly execute their intended algorithms.  This makes it easier 
to test the next level in the code hierarchy, which relies on the previously tested fundamental 
units.  As another example, solution verification in a calculation that involves interacting 
physical phenomena is aided and enhanced if it is performed for the individual phenomena.  In 
the following sections, it is implicitly assumed that this principle of hierarchical decomposition is 
to be followed when possible.    

The processes of verification and validation (V&V) and uncertainty quantification (UQ) 
presuppose a computational model or computer code that has been developed with software 
quality engineering practices appropriate for its intended use.  Software quality assurance (SQA) 
procedures provide an essential foundation for the verification of complex computer codes and 
solutions.  The practical implementation of SQA in software development may be approached 
using risk-based grading with respect to software quality.  The basic notion of risk-based grading 
is straightforward—the higher the risk associated with the usage of the software, the greater the 
care that must be taken in the software development.  This approach attempts to balance the 
programmatic drivers, scientific and technological creativity, and quality requirements.  
Requirements governing the development of software may manifest themselves in regulations, 
orders, guidance, and contracts; for example, the Department of Energy (DOE) provides 
documents detailing software quality requirements in (DOE, 2005).  Standards are available that 
outline activities that are elements for ensuring appropriate software quality (American National 
Standards Institute, 2005).  The discipline of software quality engineering presents a breadth of 
practices that can be put into place.  For example, the DOE provides a suggested set of goals, 
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principles, and guidelines for software quality practices (DOE, 2000).  The use of these practices 
can be tailored to the development environment and application area.  For example, pervasive 
use of software configuration management and regression testing is the state of practice in many 
scientific communities. 
 
 
3.2 CODE VERIFICATION 
 

Code verification is the process of determining whether a computer program (“code”) 
correctly implements the intended algorithms.  Various tools for code verification and techniques 
that employ them have been proposed (Roache, 1998, 2002; Knupp and Salari, 2003; Babuska, 
2004).  The application of these processes is becoming more prevalent in many scientific 
communities.  For example, the computer model employed in the electromagnetics case study 
described in Section 4.5 uses carefully verified simulation techniques.  Tools for code 
verification include, but are not limited to, comparisons against analytic and semi-analytic (i.e., 
independently error-controlled) solutions and the “method of manufactured solutions.”  The 
latter refers to the process of postulating a solution in the form of a function, followed by 
substituting it into the operator characterizing the mathematical model in order to obtain (domain 
and boundary) source terms for the model equations.  This process then provides an exact 
solution for a model that is driven by these source terms (Knupp and Salari, 2003; Oden, 2003).   

The comparison of code results against independent, error-controlled (“reference”) 
solutions allows researchers to assess, for example, the degree to which code implementation 
achieves the expected solution to the mathematical system of equations.  Because the reference 
solution is exact and the code implements numerical approximation to the exact solution, one can 
test convergence rates against those predicted by theory.  As a separate, complementary activity 
one can often construct a reference solution to the discretized problem, providing an independent 
solution of the computational model (not the mathematical model).  This verification activity 
allows assessment of correctness in the pre-asymptotic regime.  To make such reference 
solutions mathematically tractable, typically simplified model problems (e.g., ones with lower 
dimensionality and with simplified physics and geometry) are chosen.  However, there are few 
analytical and semi-analytical solutions for more complex problems.  There is a need to develop 
independent, error-controlled solutions for increasingly complex systems of equations—for 
example, those that represent coupled-physics, multiscale, nonlinear systems.  Developing such 
solutions that are relevant to a given application area is particularly challenging.  Similarly, 
developing manufactured solutions becomes more challenging as the mathematical models 
become more complex, since the number of terms in the source expressions grows in size and 
complexity, requiring great care in managing and implementing the source terms into the model.  

Another challenge is the need to construct manufactured solutions that expose different 
features of the model relevant to the simulation of physical systems, for example, different 
boundary conditions, geometries, phenomena, nonlinearities, or couplings.  The method of 
manufactured solutions is employed in the verification methodology used in the Center for 
Predictive Engineering and Computational Sciences (PECOS) study described in Section 5.9.  
Finally as indicated in Section 5.9, manufactured or analytical solutions should reproduce known 
challenging features of the solution, such as boundary layers, effects of interfaces, anisotropy, 
singularities, and loss of regularity. 
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Some communities employ cross-code comparisons (in which different codes solve the 
same discretized system of partial differential equations [PDEs]) and refer to this practice as 
verification.  Although this activity provides valuable information under certain conditions and 
can be useful to ensure accuracy and correctness, this activity is not “verification” as the term is 
used in this report.  Often the reference codes being compared are not themselves verifiable.  
One of the significant challenges in cross-code comparisons is that of ensuring that the codes are 
modeling identical problems; these codes tend to vary in the effects that they include and in the 
way that the effects are included.  It may be difficult to simulate identical physics processes and 
problems.  One needs to model the same problem for the different codes; ideally the reference 
solution is arrived at using a distinct error-controlled numerical technique. 

Upon completion of a code-verification study, a statement can be made about the 
correctness of the implementation of the intended algorithms in the computer program under the 
conditions imposed by the study (e.g., selected QOIs, initial and boundary conditions, geometry, 
and other inputs).  To ensure that the code continues to be subjected to verification tests as 
changes are made to it, verification problems from the study are typically incorporated in a code-
development test suite, established as part of the software quality practices. 

In practice, regression test suites are composed of a variety of tests.  Since the problems 
used for regression suites may be constructed for that purpose, it may be that a solution in 
continuous variables is known, or that the problem is constructed with a particular solution in 
mind (manufactured solution).  Such a suite may include verification tests (including comparison 
against continuous solutions, solutions to a discretized version of the problem, and manufactured 
solutions) in addition to other types of tests—unit tests (tests of a particular part or “unit” of the 
code), integration tests (tests of integrated units of the code), and user-acceptance tests.  
Performing these verification studies and augmenting test suites with them help to ensure the 
quality and pedigree of the computer code.  A natural question arises as to the sufficiency and 
adequacy of regularly passing these test suites as code development continues.  Various metrics 
(coverage metrics) have been developed to measure the ability of the tests to cover various 
aspects of the code, including source lines of computer code, functions of the code, and features 
of the code (Jones, 2000; Westfall, 2010).  Care must be taken when interpreting the results of 
these coverage metrics, particularly for scientific code development, because coverage metrics 
tend to measure the execution of a particular portion of the computer code, independent of the 
input values.  Uncertainty quantification studies explore a broad variety of input parameters, 
which may result in unexpected results from algorithms and physics models, even those that 
have undergone extensive testing. 
 Some software development teams have found utility in employing static analysis tools, 
including those that incorporate logic-checking algorithms, for source code checking (Ayewah et 
al., 2008).  Static code analysis is a software analysis technique that is performed without 
actually executing the software.  Modern static analysis tools parse the code in a way similar to 
what compilers do, creating a syntax tree and database of the entire program’s code, which is 
then analyzed against a set of rules or models (Cousot, 2007).  On the basis of those rules, the 
analysis tool can create a report of suspected defects in the code.  The formalism associated with 
these rules allows potential defects to be categorized according to severity and type.  Since the 
analysis tools have access to a database of the entire source code, defects that are a combination 
of source code statements in disparate locations in the code implementations can be identified 
(e.g., allocation of memory in one portion of the implementation without release of that memory 
prior to returning control flow).  Such tools can aid in verifying that the source code 
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implementation is a correct realization of the intended algorithms.  However, to date these tools 
have been able to answer only limited questions about codes of limited complexity.  The 
expansion of these tools to science and engineering simulation software, and the kinds of 
questions that they may ultimately be able to answer, remain topics for further study. 
 
 
3.3 SOLUTION VERIFICATION 
 

Solution verification is the process of determining or estimating the accuracy with which 
algorithms solve the mathematical-model equations for the given QOIs.  A breadth of tools have 
been developed for solution verification; these include, but are not limited to, a priori and a 
posteriori error estimation1 and grid adaptation to minimize numerical error.  The most 
sophisticated solution-verification techniques incorporate error estimation with error control (by 
means of h-, p-, or r-adaptivity) in the physics simulation. 

QOIs are typically expressed as functionals of the fully computed solution across the 
problem domain.  The solution of the mathematical-model equations is often a set of dependent-
variable values that are evaluated at a large number of points in a space defined by a set of 
independent variables.  For example, the dependent variables could be pressure, temperature, and 
velocity; the independent variables could be position and time.  In the usual case, it is not the 
value at each point that is of interest, but rather the more aggregated quantities—such as the 
average pressure in a space-time region—that are functionals of the complete solution. 

 
Finding:  Solution verification (determining the accuracy with which the numerical methods in a 
code solve the model equations) is useful only in the context of specified quantities of interest, 
which are usually functionals of the fully computed solution. 
  
 The accuracy of the computed solution may be very different for different pointwise 
quantities and for different functionals.  It is important to identify the QOIs because the 
discretization and resolution requirements for predicting these quantities may vary (e.g., 
predicting an integral quantity across the spatial domain may be less restrictive than predicting 
local, high-order derivatives).  The PECOS case study presented in Section 5.9 employs 
quantities of interest as a fundamental aspect of solution verification. 

Solution verification is a matter of numerical-error estimation, the goal being to estimate 
the error present in the computational QOI relative to an exact QOI from the underlying 
mathematical model.  While code verification considers generic formulations of simplified 
problems within a class that the code was designed to treat, solution verification pertains to the 
specific, large-scale modeling problem that is at the center of the simulation effort, with specific 
inputs (boundary and initial conditions, constitutive parameters, solution domains, source terms) 
and outputs (the QOIs). The goal of the solution-verification process is to estimate and control 
the error for the simulation problem at hand.  The most sophisticated realization of this technique 
is online during the solution process to ensure that the actual delivered numerical solution from 
the code is a reliable estimate of the true solution to the underlying mathematical model.  Not all 
discretization techniques and simulation problems lend themselves to this level of sophistication.  
                                                 
1 A priori error estimation is done by an examination of the model and computer code; a posteriori error estimation 
is done by an examination of the results of the execution of the code. 
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Solution verification may also employ relevant reference solutions, self-convergence, and other 
techniques for estimating and controlling numerical error prior to performing the simulation at 
hand. 

Solution-verification practices may employ independent, error-controlled (“reference”) 
solutions.  Comparing code results against reference solutions allows researchers to estimate, for 
example, the numerical error introduced by the discretized equations being employed and to 
assess the order of accuracy.  Maintaining second-order, or even first-order, convergence can be 
challenging in complex, nonlinear, multiphysics simulations.  Obtaining reference solutions that 
are demonstrably relevant to the simulation at hand is challenging, particularly for highly 
complex large-scale models; thus, the application of this approach to solution verification is 
limited.  More reference solutions that exhibit features of the phenomena of interest are needed 
for complex problems, including those with strong nonlinearities, coupled physical phenomena, 
coupling across scales, and stochastic behavior.  Generating relevant reference solutions for these 
and other complex, nonlinear, multiphysics problems would extend the breadth of problems for 
which this approach to solution verification could be employed.  

Solution verification may also be performed by using the code itself to produce high-
resolution reference solutions—a practice referred to as performing “self-convergence” studies.  
If rigorous error estimates are available, they can be used to extrapolate successive discrete 
calculations to estimate the infinite-resolution solution.  In the absence of such an error estimate, 
the highest-resolution simulation may be used as the reference “converged” solution.  Such 
studies can be used to assess the rate at which self-convergence is achieved in the QOIs and to 
inform the discretization and resolution requirements to control numerical error for the 
simulation problem at hand.  This approach has the benefit that the complexity of the problem of 
interest is limited only by the capabilities of the code being studied and the computer being used, 
removing the limitation typically imposed by requiring independent error-controlled solutions. 

Methods of numerical-error estimation generally fall into two categories: a priori 
estimates and a posteriori estimates.  The former, when available, can provide useful information 
on the convergence rates obtainable as approximation parameters (e.g., mesh sizes) are refined, 
but they are of little use in quantifying numerical error in quantities of interest.  A posteriori 
estimates aim to achieve quantitative estimates of numerical error (Babuska and Stromboulis, 
2001; Ainsworth and Oden, 2000).  Methods in this category include explicit and implicit 
residual-based methods for global error measures, variants of Richardson extrapolation,2 
superconvergence recovery methods, and goal-oriented methods based on adjoint solutions.  The 
recent development of goal-oriented adjoint-based methods, in particular, has produced methods 
that are capable of yielding, in many cases, guaranteed bounds on errors for specific applications 
and quantities of interest (Becker and Rannacher, 2001; Oden and Prudhomme, 2001; Ainsworth 
and Oden, 2000).  This research incorporates ingredients needed to control numerical errors for 
QOIs in simulation problems at hand.  Recent extensions include the ability to treat error in 
stochastic PDEs (Almeida and Oden, 2010) and errors for multiscale and multiphysics problems 
(Estep et al., 2008; Oden et al., 2006), including molecular and atomistic models and combined 
atomistic-to-continuum hybrids (Bauman et al., 2009).  Parallel adaptive mesh refinement 
(AMR) methods (Burstedde et al., 2011) have been integrated with adjoint-based error estimators 
to bring error estimation to very large-scale problems on parallel supercomputers (Burstedde et 
al., 2009). 

                                                 
2 Richardson extrapolation is a numerical technique used to accelerate the rate of convergence of a sequence.  See 
Brezinski and Redivio-Zaglia (1991). 
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 Despite the recent successes in the development of goal-oriented, adjoint-based methods, 
a number of challenges remain.  These include the development of two-sided bounds for a 
broader class of problems (beyond elliptic PDEs), further extensions to stochastic PDEs, and the 
generalizations of adjoints for non-smooth and chaotic systems.  Additionally, challenges remain 
for the development of the theory and scalable implementations for error estimation on adaptive 
and complex meshes (e.g., p- and r-adaptive discretizations and AMR).  The development of 
rigorous a posteriori error estimates and adaptive control of all components of error for complex, 
multiphysics, multiscale models is an area that will remain ripe for research in computational 
mathematics over the coming decade. 
 
Finding:  Methods exist for estimating tight two-sided bounds for numerical error in the solution 
of linear elliptic PDEs.  Methods are lacking for similarly tight bounds on numerical error in 
more complicated problems, including those with nonlinearities, coupled physical phenomena, 
coupling across scales, and stochasticity (as in stochastic PDEs). 
 
 The results of the solution-verification process help in quantitatively estimating the 
numerical error impacting the quantity of interest.  More sophisticated techniques allow the 
numerical error to be controlled in the simulation, allowing researchers to target a particular 
maximum tolerable error and adapt the simulation to meet that requirement, provided sufficient 
computational time and memory are available.  Typically, such adaptation controls the 
discretization error present in the model.  Such techniques can then lead to managing the total 
error in a simulation, including discretization error as well as errors introduced by iterative 
algorithms and other approximation techniques.  
 
Finding:  Methods exist for estimating and controlling spatial and temporal discretization errors 
in many classes of PDEs.  There is a need to integrate the management of these errors with 
techniques for controlling errors due to incomplete convergence of iterative methods, both linear 
and nonlinear.  Although work has been done on balancing discretization and solution errors in 
an optimal way in the context of linear problems (e.g., McCormick, 1989; Rüde, 1993), research 
is needed on extending such ideas to complex nonlinear and multiphysics problems.  
 
 Managing the total error of a solution offers opportunities to gain efficiencies throughout 
the verification, validation, and uncertainty quantification (VVUQ) process.  As with other 
aspects of the verification process, managing total error is best done in the context of the use of 
the model and the QOIs.  The error may be managed differently for a “best physics” estimate to a 
particular quantity of interest versus an ensemble of models being used to train a reduced-order 
model.  Managing the total error appropriately throughout the VVUQ study may allow 
improvement of the turnaround time of the study. 
 
 
3.4 SUMMARY OF VERIFICATION PRINCIPLES 

 
Important principles that emerge from the above discussion of code and solution 

verification are as follows:   
 Solution verification must be done in terms of specified QOIs, which are usually 

functionals of the full computed solution. 
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 The goal of solution verification is to estimate and control, if possible, the error in 
each QOI for the simulation problem at hand. 

 The efficiency and effectiveness of code- and solution-verification processes can 
often be enhanced by exploiting the hierarchical composition of codes and 
solutions, verifying first the lowest-level building blocks and then moving 
successively to more complex levels. 

 Verification is most effective when performed on software developed under 
appropriate software quality practices.  These include software-configuration 
management and regression testing. 
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4 Emulation, Reduced-Order Modeling, and Forward Propagation 
 

Computational models simulate a wide variety of detailed physical processes, such as 
turbulent fluid flow, subsurface hydrology and contaminant transport, hydrodynamics, and also 
multiphysics, as found in applications such as nuclear reactor analysis and climate modeling, to 
name only a few examples.  The frequently high computational cost of running such models 
makes their assessment and exploration challenging.  Indeed, continually exercising the 
simulator to carry out tasks such as sensitivity analysis, uncertainty analysis, and parameter 
estimation is often infeasible.  The analyst is instead left to achieve his or her goals with only a 
limited number of calls to the computational model or with the use of a different model 
altogether.  In this chapter, methods for computer model emulation and sensitivity analysis are 
discussed. 

Two types of emulation settings, designed to solve different, but related, problems, must be 
distinguished.  The first type attempts to approximate the dependence of the computer model 
outputs on the inputs.  In this case, the uncertainty comes from not having observed the full 
range of model outputs or from the fact that another model is used in place of the costly 
computational model of interest.  These emulators include regression models, Gaussian process 
(GP) interpolators, and Lagrangian interpolations of the model output, as well as reduced-order 
models.  

The second type of emulation problem—discussed in Section 4.2—is similar, with the 
additional considerations that the input parameters are now themselves uncertain.  So, the aim is 
to emulate the distribution of outputs, or a feature thereof, under a pre-specified distribution of 
inputs.  Statistical sampling of various types (e.g., Monte Carlo sampling) can be an effective 
tool for mapping uncertainty in input parameters into uncertainty in output parameters (McKay 
et al., 1979).  In its most fundamental form, sampling does not retain the functional dependence 
of output on input, but rather produces quantities that have been averaged simultaneously over 
all input parameters.  Alternatively, approaches such as polynomial chaos attempt to leverage 
mathematical structure to achieve more efficient estimates of quantities of interest (QOIs).  
Indeed, polynomial chaos expansions can lead to a more tractable representation of the 
uncertainty of the QOIs, which can then be explored using mathematical or computational 
means. 

Finally, a few details should be noted before proceeding.  The methods discussed—such as 
emulation, reduced-order modeling, and polynomial chaos expansions—use output produced 
from ensembles of simulations carried out at different input settings to capture the behavior of 
the computational model, the aim being to maximize the amount of information available for the 
uncertainty quantification (UQ) study given a limited computational budget.  The term 
“emulator” is most often used to describe the first type of emulation problem and is the 
terminology adopted hereafter.  Furthermore, unless otherwise indicated, the computational 
models are assumed to be deterministic.  That is, code runs repeated at the same inputs settings 
will yield the same outputs. 

 
 

4.1 APPROXIMATING THE COMPUTATIONAL MODEL  
 

Representing the input/output relationships in a model with a statistical surrogate (or 
emulator) and using a reduced-order model are two broad methods effectively used to reduce the 
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computational cost of model exploration.  For instance, a reduced-order model (Section 4.1.2) or 
an emulator (Section 4.1.1) can be used to stand in place of the computer model when a 
sensitivity analysis is being conducted or uncertainty is propagating across the computer model 
(see Section 4.2 and the example on electromagnetic interference phenomena in Section 4.5).  Of 
course, as with any approximation, there is a reduction in the accuracy of the estimates obtained, 
and the trade-off between accuracy and cost needs to be considered by the analyst.  

 
4.1.1 Computer Model Emulation 
 

In settings in which the simulation model is computationally expensive, an emulator can be 
used in its place.  The computer model is generally viewed as a black box, and constructing the 
emulator can be thought of as a type of response-surface modeling exercise (e.g., Box and 
Draper, 2007).  That is, the aim is to establish an approximation to the input-output map of the 
model using a limited number of calls of the simulator. 

Many possible parametric and non-parametric regression techniques can provide good 
approximations to the computer-model response surface.  For example, there are those that 
interpolate between model runs such as GP models (Sacks et al., 1989; Gramacy and Lee, 2008) 
or Lagrange interpolants (e.g., see Lin et al., 2010).  Approaches that do not interpolate the 
simulations, but which have been used to stand in place of the computer models, include 
polynomial regression (Box and Draper, 2007), multivariate adaptive regression splines (Jin et 
al., 2000), projection pursuit (see Ben-Ari and Steinberg, 2007, for a comparison with several 
methods), radial basis functions (Floater and Iske, 1996), support vector machines (Clarke et al., 
2003), and neural networks (Hayken, 1998), to name only a few.  When the simulator has a 
stochastic or noisy response (Iooss and Ribatet, 2007), the situation is similar to the sampling of 
noisy physical systems in which random error is included in the statistical model, though the 
variability is likely to also depend on the inputs.  In this case, any of the above models can be 
specified so that the randomness in the simulator response is accounted for in the emulation of 
the simulator.   

Some care must be taken when emulating deterministic computer models if one is 
interested in representing the uncertainty (e.g., a standard deviation or a prediction interval) in 
predictions at unsampled inputs.  To deal with the difference from the usual noisy settings, Sacks 
et al. (1989) proposed modeling the response from a computer code as a realization of a GP, 
thereby providing a basis for UQ (e.g., prediction interval estimation) that most other methods 
(e.g., polynomial regression) fail to do.  A correlated stochastic process model with probability 
distribution more general than that of the GP could also be used for this interpolation task.  A 
significant benefit of the Gaussian model is the persistence of the tractable Gaussian form 
following conditioning of the process at the sampled points and the representation of uncertainty 
at unsampled inputs. 

Consider, for example, the behavior of the prediction intervals in Figure 4.1.  Figure 4.1 (a) 
shows a GP fit to deterministic computer-model output, and Figure 4.1 (b) shows the same data 
fit using ordinary least squares regression with the set of Legendre polynomials.  Both 
representations emulate the computer model output fairly well, but the GP has some obvious 
advantages.  Notice that the fitted GP model passes through the observed points, thereby 
perfectly representing the deterministic computational model at the sampled inputs.  In addition, 
the prediction uncertainty disappears entirely at sites for which simulation runs have been 
conducted (the prediction is the simulated response).  Furthermore, the resulting prediction 
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intervals reflect the uncertainty one would expect from a deterministic computer model—zero 
predictive uncertainty at the observed input points, small predictive uncertainty close to these 
points, and larger uncertainty farther away from the observed input points. 

 

 
FIGURE 4.1  Two prediction intervals fit to a deterministic computer model, (a) Gaussian 
process and (b) ordinary least squared regression with legendre polynomials. 
 

In spite of the aforementioned advantages, GP and related models do have shortcomings.  
For example, they are challenging to implement for large ensemble sizes.  Many response-
surface methods (e.g., polynomial regression or multivariate adaptive regression splines) can 
handle much larger sample sizes than the GP can and are computationally faster.  Accordingly, 
adapting these approaches so that they can have the same sort of inferential advantages, as shown 
in Figure 4.1, as those of the GP in the deterministic setting is a topic of ongoing and future 
research.   

In the coming years, as computing resources become faster and more available, emulation 
will have to make use of very large ensembles over ever-larger input spaces.  Existing emulation 
approaches tend to break down if the ensemble size is too large.  To accommodate larger and 
larger ensemble sizes, new computational schemes that are suitable for high-performance 
computing architectures will be required for fitting emulators to computer-model output and 
producing predictions from these emulators. 
 
Finding: Scalable methods do not exist for constructing emulators that reproduce the high-
fidelity model results at each of the N training points, accurately capture the uncertainty away 
from the training points, and effectively exploit salient features of the response surface.   
 

Finally, most of the current technology for fitting response surfaces treats the 
computational model as a black box, ignoring features such as continuity or monotonicity that 
might be present in the physical system being modeled.  Augmented emulators that incorporate 
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this phenomenology could provide better accuracy away from training points (Morris, 1991).  
Current approaches that make use of derivative or adjoint information are examples of emulators 
that include additional information about the phenomena being modeled. 
  
Finding:  Many emulators are constructed only with knowledge about values at training points 
but do not otherwise include knowledge about the phenomena being modeled.  Augmented 
emulators that incorporate this phenomenology could provide better accuracy away from training 
points. 
 
4.1.2  Reduced-Order Models 
 

An alternative to emulating the computational model is to use a reduced-order version of 
the forward model—which is itself a reduced-order model of reality.  There are several 
approaches to achieve this, with projection-based model-reduction techniques being the most 
developed.  These techniques aim to identify within the state space a low-dimensional subspace 
in which the “dominant” dynamics of the system reside (i.e., those dynamics important for 
accurate representation of input-output behavior).  Projecting the system-governing equations 
onto this low-dimensional subspace yields a reduced-order model.  With appropriate formulation 
of the model reduction problem, the basis and other elements of the projection process can be 
pre-computed in an off-line phase, leading to a reduced-order model that is rapid to evaluate and 
solve for new parameter values.  

The substantial advances in model reduction over the past decade have taken place largely 
in the context of forward simulation and control applications; however, model reduction has a 
large potential to accelerate UQ applications.  The challenge is to derive a reduced model that (1) 
yields accurate estimates of the relevant statistics, meaning that in some cases the model may 
need to well represent the entire parameter space of interest for the UQ task at hand, and (2) is 
computationally efficient to construct and solve. 

Recent years have seen substantial progress in parametric and nonlinear model reduction 
for large-scale systems.  Methods for linear time-invariant systems are by now well established 
and include the proper orthogonal decomposition (POD) (Berkooz et al., 1993; Holmes et al., 
1996; Sirovich, 1987), Krylov-based methods (Feldmann and Freund, 1995; Gallivan et al., 
1994), balanced truncation (Moore, 1981), and reduced-basis methods (Noor and Peters, 1980; 
Ghanem and Sarkar, 2003).  Extensions of these methods to handle nonlinear and parametrically 
varying problems have played a major role in moving model reduction from forward simulation 
and control to applications in optimization and UQ. 

Several methods have been developed for nonlinear model reduction.  One approach is to 
use the trajectory piecewise-linear scheme, which employs a weighted combination of linear 
models, obtained by linearizing the nonlinear system at selected points along a state or parameter 
trajectory (Rewienski and White, 2003).  Other approaches propose using a reduced basis or 
POD model-reduction approach and approximating the nonlinear term through the selective 
sampling of a subset of the original equations (Bos et al., 2004; Astrid et al., 2008; Barrault et al., 
2004; Grepl et al., 2007).  For example, in Astrid et al. (2008), the missing-point-estimation 
approach, based on the theory of “gappy POD” (Everson and Sirovich, 1995), is used to 
approximate nonlinear terms in the reduced model with selective spatial sampling.  The 
empirical interpolation method (EIM) is used to approximate the nonlinear terms by a linear 
combination of empirical basis functions for which the coefficients are determined using 
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interpolation (Barrault et al., 2004; Grepl et al., 2007).  Recent work has established the discrete 
empirical interpolation method (DEIM) (Chaturantabut and Sorensen, 2010), which extends the 
EIM to a more general class of problems. Although these methods have been successful in a 
range of applications, several challenges remain for nonlinear model reduction.  For example, 
current methods pose limitations on the form of the nonlinear system that can be considered, and 
problems with nonlocal nonlinearities can be challenging. 

For parametric model reduction, several classes of methods have emerged.  Each approach 
handles parametric variation in a different way, although there is a common theme of 
interpolation among information collected at different parameter values.  The EIM and DEIM 
methods described above can be used to handle some classes of parametrically varying systems.  
In the circuit community, Krylov-based methods have been extended to include parametric 
variations, again with a restriction on the form of systems that can be considered (Daniel et al., 
2004).  Another class of approaches approximates the variation of the projection basis as a 
function of the parameters (Allen et al., 2004; Weickum et al., 2006).  An alternative for 
expansion of the basis is interpolation among the reduced subspaces (Amsallem et al., 2007)—
for example, using interpolation in the space tangent to the Grassmannian manifold of a POD 
basis constructed at different parameter points—or among the reduced models (Degroote et al., 
2010). 

Historically, the use of reduced-order models in UQ is not as common as the surrogate 
modeling methods (e.g., see Section 4.2) that approximate the full inputs-to-observable map.  
Some recent examples of model reduction for UQ include statistical inverse problems 
(Lieberman et al., 2010; Galbally et al., 2010), forward propagation of uncertainty for heat 
conduction (Boyaval et al., 2009), computational fluid dynamics (Bui-Thanh and Wilcox, 2008), 
and materials (Kouchmeshky and Zabaras, 2010).   

 
Finding: An important area of future work is the use of model reduction for optimization under 
uncertainty. 
 
 
4.2 FORWARD PROPAGATION OF INPUT UNCERTAINTY 
 

In many settings, inputs to a computer model are uncertain and therefore can be treated as 
random variables.  Interest then lies in propagating the uncertainty in the input distribution to the 
output of the deterministic computer model.  It is the distribution of the model outputs, or some 
feature thereof, that is the primary interest of a typical investigation.  For example, one may be 
interested in the 95th percentile of the output distribution or, perhaps, the mean of the output, 
along with associated uncertainties.   

The set of approaches that either treat the computational model as a black box (non-
intrusive techniques) or require modifications to the underlying mathematical model (intrusive 
techniques) is considered here.  In addition, the activities are separated into settings in which (1) 
the number of simulator evaluations is essentially unlimited (e.g., Monte Carlo and polynomial 
chaos) and (2) only a relatively small number of simulator runs is available (e.g., Gaussian 
process, polynomial chaos, and quasi-Monte Carlo).   

In a most straightforward manner Monte Carlo sampling can be used—where one can 
sample directly from the input distribution and evaluate the output of the computer model at each 
input setting.  The estimates for the QOI (mean response, confidence intervals, percentiles, and 
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so on) are obtained from the induced empirical distribution function of the model outputs.  
Generally, Monte Carlo sampling does not depend on the dimension of the input space or on the 
complexity of the model.  This makes Monte Carlo sampling an attractive approach when the 
forward model is complicated, has many inputs, and is sufficiently fast.  However, in many real-
world problems, Monte Carlo methods can require thousands of code executions to produce 
sufficient accuracy.  The number of required function evaluations can be significantly reduced by 
using quasi-Monte Carlo methods (e.g., see Lemieux, 2009).  These rely on relatively few input 
configurations and attempt to mimic the properties of a random sample to estimate features of 
the output distribution (e.g., Latin hypercube sampling; McKay et al., 1979; Owen, 1997).    

Monte-Carlo based approaches are ill-equipped to take advantage of physical or 
mathematical structure that could otherwise expedite the calculations.  In its most fundamental 
form, sampling does not retain the functional dependence of output on input, but rather produces 
quantities that have been averaged simultaneously over all input parameters.  In 
contradistinction, the polynomial chaos (PC) methodology (Ghanem and Spanos, 1991; Soize 
and Ghanem, 2004; Najm, 2009; Xiu and Karniadakis, 2002; Xiu, 2010), capitalizes on the 
mathematical structure provided by the probability measures on input parameters to develop 
approximation schemes with a priori convergence results inherited from Galerkin projections and 
spectral approximations common in numerical analysis.  The PC methodology has two essential 
components.  A first step involves a description of stochastic functions, variables, or processes 
with respect to a basis in a suitable vector space.  The choice of basis can be adapted to the 
distribution of the input parameters (e.g., Xiu and Karniadakis, 2002; Soize and Ghanem, 2004).  
The second step involves computing the coordinates in this representation using functional 
analysis machinery, such as orthogonal projections and error minimization.  These coordinates 
permit the rapid evaluation of output quantities of interest as well as of the sensitivities (both 
local and global) of output uncertainty with respect to input uncertainty.   

Two procedures have generally pursued the connection to PC approximations: intrusive 
and non-intrusive.  The so-called non-intrusive approach computes the coefficients in the PC 
decomposition as multidimensional integrals that are approximated by means of sparse 
quadrature and other numerical integration rules.  The intrusive approach, however, synthesizes 
new equations that govern the behavior of the coefficients in the PC decomposition from the 
initial governing equations.  Intrusive uncertainty propagation approaches involve a 
reformulation of the forward model, or its adjoint, to directly produce a probabilistic 
representation of uncertain model outputs induced by input uncertainty.  Such approaches 
include PC methods, as well as extensions of local sensitivity analysis and adjoint methods.  In 
either case, unlike the first type of emulators described in Section 4.1.1, this class of emulator 
aims to directly map uncertainty of model input to uncertainty of model output.  

Another strategy is to first construct an emulator of the computer model (see Section 4.1.1) 
and then propagate the distribution of inputs through the emulator (Oakley and O’Hagan, 2002; 
Oakley, 2004; Cannamela et al., 2008).  Essentially, one treats the emulator as if it were a fast 
computer model and uses the methods already discussed.  In these cases, one must account for 
the variability in the output distribution induced by the random variable as well as the 
uncertainty in emulating the computer model (Oakley, 2004).  Of course, almost all approaches, 
outside of straight Monte Carlo, will be faced with the curse of dimensionality.  Accounting for 
this induced variability is an important direction for future research.  Interestingly, if the 
computer model can be assumed to be a GP with known correlation/variance parameters, the 
propagation of the uncertainty distribution of the model inputs across the GP (i.e., the response 
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surface approach) and polynomial chaos can be viewed as alternative approaches to the same 
problem, both giving effective approaches for exploring the uncertainty in QOIs.  

Consider the particularly challenging problem described in Section 4.5 in which interest 
lies in estimating statistics (e.g., mean and standard deviation) for observables in an 
electromagnetic interference (EMI) application.  The solution combines features of polynomial 
chaos expansions and also of emulation followed by uncertainty propagation (Oakley, 2004).  
For this application, the computer model outputs behave quasi-chaotically as a function of the 
input configurations.  In such cases, emulators that leverage local information instead of a single 
global model are often more effective.  In this specific case study, the computer model is 
emulated by a non-intrusively computed polynomial chaos decomposition and uses a robust 
emulator that attempts to model local features.  The approach taken is similar to that of Oakley 
(2004) insofar as the emulator is first constructed and then the distribution of QOIs is 
approximated by propagating the distribution of inputs across the emulator.   

These methods for propagating the variation of the input distribution to explore the 
uncertainty in the model output are particularly effective when the QOIs are estimates that are 
centrally located in the output distribution.  However, decision makers are often most interested 
in rare events (e.g., extreme weather scenarios, or a combination of conditions causing system 
failure).  These cases are located in the tails of the output distribution where exploration is often 
impractical with the aforementioned methods.  This problem is only exacerbated for high-
dimensional inputs.  An important research direction is the estimating of the probability of rare 
events in light of complicated models and input distributions.  One approach to this problem is to 
bias the model output toward these rare events and properly account for this biasing.  Importance 
sampling (Shahabuddin, 1994) is another approach. 
 
Finding: Further research is needed to develop methods to identify the input configurations for 
which a model predicts significant rare events and for assessing their probabilities. 
 
 
4.3 SENSITIVITY ANALYSIS 
 

Sensitivity analysis (SA) is concerned with understanding how changes in the 
computational-model inputs influence the outputs or functions of the outputs.  There are several 
motivations for SA, including the following: enhancing the understanding of a complex model, 
finding aberrant model behavior, seeking out which inputs have a substantial effect on a 
particular output, exploring how combinations of inputs interact to affect outputs, seeking out 
regions of the input space that lead to rapid changes or extreme values in output, and gaining 
insight as to what additional information will improve the model’s ability to predict.  Even when 
a computational model is not adequate for reproducing physical system behavior, its sensitivities 
may still be useful for developing inferences about key features of the physical system.  

In many cases, the most general and physically accurate computational model takes too 
long to run, making impractical its use as the main tool for a particular investigation, and forcing 
one to seek a simpler, less computationally demanding model.  SA can serve as a first step in 
constructing an emulator and/or a reduced model of a physical system, capturing the important 
features in a large-scale computational model while sacrificing complexity to speed up the run 
time.  A perfunctory SA also serves as a simplest first step to characterizing output uncertainty 
induced by uncertainty in inputs (uncertainty analysis is discussed below in this Chapter). 
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Implicit in SA is an underlying surrogate that permits the efficient mapping of changes in 
input to changes in output.  This surrogate highlights the value of emulators and reduced-order 
models to SA.  A few cases in which the peculiar structure of the surrogates allows the analytical 
evaluation of key sensitivity quantities have attracted particular attention and served to shape the 
current practice of SA.  Local SA is associated with linearization of the input-output map at 
some judiciously chosen points.  Higher-order Taylor expansions have also been used to enhance 
the accuracy of these surrogates.  Global SA, however, relies on global surrogates that better 
capture the effects of interactions between random variables.  Two particular forms of global 
surrogates have been pursued in recent years that rely, respectively, on polynomial chaos 
decompositions and Sobol’s decomposition.  These decompositions permit the computation of 
the sensitivity of output variance with respect to the variances of the individual input parameters.  
Given the dominance in current research and practice of these particular interpretations of global 
and local sensitivity, these global SA methods and local SA methods are detailed in the 
remainder of this section. 

 
4.3.1 Global Sensitivity Analysis  
 

Global SA seeks to understand a complex function over a broad space of input settings, 
decomposing this function into a sum of increasingly complex components (see Box 4.1).  These 
components might be estimated directly (Oakley and O’Hagan, 2004), or each of these 
components can be summarized by a variance measure estimated using one of a variety of 
techniques: Monte Carlo (MC) (Kleijnen and Helton, 1999); regression (Helton and Davis, 
2000); analysis of variance (Moore and McKay, 2002); Fourier methods (Sobol, 1993; Saltelli et 
al., 2000); or GP or other response-surface models (Oakley and O’Hagan, 2004; Marzouk and 
Najm, 2009).  Each of these approaches requires an ensemble of forward model runs to be 
carried out over a specified set of input settings.  

The number of computational-model runs required will depend on the complexity of the 
forward model over the input space and the dimension of the input space, as well as the 
estimation method.  A key challenge for global SA—indeed, for much of VVUQ—is to carry out 
such analyses with limited computational resources.  The various estimation methods deal with 
this issue in one way or another.  For example, MC methods, while generally requiring many 
model runs to gain reasonable accuracy, can handle high-dimensional input spaces and arbitrary 
complexity in the computational model.  In contrast, response-surface-based approaches, such as 
GP, may use an ensemble consisting of very few model runs, but they typically require 
smoothness and sparsity in the model response (i.e., the response surface depends on only a 
small set of the inputs).  Box 4.1 describes global sensitivity using Sobol decompositions—
although these are not the only the sensitivity measures.  For example, one may be interested in 
the sensitivity of quantities such as the probability of exceedance (the probability that a QOI will 
exceed some quantity).  In this case, other approaches to global sensitivity must be used. 
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BOX 4.1  Sobol’s Functional Decomposition of a Complex Model  

Sobol decomposition of η( x1, x2, x3) = (x1 + 1) cos(π x2) + 0 x3 

 

     
η1( x1)        η12( x1 , x2) 

 

     

    η ( x)            η2( x2)        η13( x1 , x3) 
 

   
η3( x3)        η23( x2 , x3) 

 
Global sensitivity analysis seeks to decompose a complex model—or function—

into a sum of a constant plus main effects plus interactions (Sobol, 1993).  Here a 
three-dimensional function is decomposed into three main effect functions (red lines) 
η1, η2, and η3 plus three two-way interaction functions η12, η13, and η23 plus a single
three-way interaction (not shown).  Global sensitivity analysis seeks to estimate these 
component functions or variance measures of these component functions.  See Saltelli 
et al. (2000) or Oakley and O’Hagan (2004) for examples. 

 

Finding:  In cases where a large-scale computational model is built up from a hierarchy of 
submodels, there is opportunity to develop efficient SA approaches that leverage this hierarchical 
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construction, taking advantage of separate sensitivity analyses on these submodels.  Exactly how 
to aggregate these separate sensitivity anslyses to give accurate sensitivities on the larger-scale 
model outputs remains an open problem.  
 
4.3.2  Local Sensitivity Analysis 
 

Local sensitivity analysis is based on the partial derivatives of the forward model with 
respect to the inputs, evaluated at a nominal input setting.  Hence, this sort of SA makes sense 
only for differentiable outputs.  The partial derivatives of the forward model, perhaps scaled, can 
serve as some indication of how model output responds to input changes.  First-order 
sensitivities—the gradient of an output of interest with respect to inputs—are most commonly 
used, although second-order sensitivities incorporating partial or full Hessian information can be 
obtained in some settings.  Even higher-order sensitivities have been pursued, albeit with 
increasing difficulty (emerging tensor methods may make third-order sensitivities more feasible).   

Local sensitivities give limited information about forward-model behavior in the 
neighborhood of the nominal input setting, providing some information about the input-output 
response of the forward model.  Local sensitivity, or derivative information, is more commonly 
used for optimization (Finsterle, 2006; Flath et al., 2011) in inverse problems (see Section 4.4) or 
local approximation of the forward model in nonlinear regression problems (Seber and Wild, 
2003).  In these cases, it is the sensitivity of an objective function, likelihood, or posterior density 
with respect to the model inputs that is required. 

There are two approaches to obtaining local sensitivities: a black-box approach and an 
intrusive approach.  In the black box approach, the underlying mathematical or computational 
model is regarded as being inaccessible, as might be the case with an older, established, or 
poorly documented code.  By contrast, the intrusive approach presumes that the model is 
accessible, whether because it is sufficiently well documented and modular, or because it is 
amenable to the retrofitting of local sensitivity capabilities, or because it was developed with 
local sensitivities in mind.  

There are limited options for incorporating local sensitivities into a black box forward 
code.  The classical approach is finite differences.  However, this approach can provide highly 
inaccurate gradient information, particularly when the underlying forward model is highly 
nonlinear, and "solving" the forward problem amounts to being content with reducing the 
residual by several orders of magnitude.  Moreover, the cost of finite differencing grows linearly 
with the number of inputs.   

An alternative approach is provided by automatic differentiation (AD), sometimes known 
as algorithmic differentiation.  Assuming that one has access to source code, AD is able to 
produce sensitivity information directly from the source code by exploiting the fact that a code is 
written from a series of elementary operations, whose known derivatives can be chained together 
to provide exact sensitivity information.  This approach avoids the numerical difficulties of finite 
differencing.  Furthermore, the so-called reverse mode of AD can be employed to generate 
gradient information at a cost that is independent (to leading order) of the number of inputs.  
However, the basic difficulty with AD methods is that they differentiate the code rather than the 
underlying mathematical model.  For example, while the sensitivity equations are linear, AD 
differentiates through the nonlinear solver; and while sensitivity equations share the same 
operator, AD repeatedly differentiates through the preconditioner.  This also means that artifacts 
of the discretization (e.g., adaptive mesh refinement) are differentiated.  Additionally, when the 
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code is large and complex, current AD tools will often break down.  Still, when they do work, 
and when the intrusive methods described below are not feasible because of time constraints or 
lack of modularity of the forward code, AD can be a viable approach. 

If one has access to the underlying forward model, or if one is developing a local sensitivity 
capability from scratch, one can overcome many of the difficulties outlined above by using an 
intrusive method.  These methods differentiate the mathematical model underlying the code.  
This can be done at the continuum level, yielding mathematical derivatives that can then be 
discretized to produce numerical derivatives.  Alternatively, the discretized model may be 
directly differentiated.  These two approaches do not always result in the same derivatives, 
though often (e.g., with Galerkin discretization) they do.  The advantage of differentiating the 
underlying mathematical model is that one can exploit the model structure.  The equations that 
govern the derivatives of the state variables with respect to each parameter—the so-called 
sensitivity equations—are linear, even when the forward problem is nonlinear, and they are 
characterized by the same coefficient matrix (or operator) for each input.  This matrix is the 
Jacobian of the forward model, and thus Newton-based forward solvers can be repurposed to 
solve the sensitivity equations.  Because each right-hand side corresponds to the derivative of the 
model residual with respect to each parameter, the construction of the pre-conditioner can be 
amortized over all of the inputs.  

Still, solving the sensitivity equations may prove too costly when there are large numbers 
of inputs.  An alternative to the sensitivity equation approach is the so-called adjoint approach, in 
which an adjoint equation1 is solved for each output of interest, and the resulting adjoint solution 
is used to construct the gradient (analogs exist for higher derivatives).  This adjoint equation is, 
like the sensitivity equation, always linear in the adjoint variable, and its right-hand side 
corresponds to the derivative of the output with respect to the state.  Its operator is the adjoint (or 
transpose) of the linearized forward model, and so here again pre-conditioner construction can be 
amortized, in this case over the outputs of interest.  When the number of outputs is substantially 
less than the number of input parameters, the adjoint approach can result in substantial savings.  
By postponing discretization until after derivatives have been derived (through variational 
means), one can avoid differentiating artifacts of the discretization (e.g., subgrid scale models, 
flux limiters).  

Even first derivatives can greatly extend one’s ability to explore the forward model’s 
behavior in the service of UQ, especially when the input dimension is large.  If derivative 
information can be calculated for the cost of only an additional model run, as is often the case 
with adjoint models, then tasks such as global SA, solving inverse problems, and sampling from 
a high-dimensional posterior distribution can be carried out with far less computational effort, 
making currently intractable problems tractable.   

Generalizing adjoint methods to better tackle difficult computational problems such as 
multiphysics applications, operator splitting, and non-differentiable solution features (such as 
shocks) would extend the universe of problems for which derivative information can be 
efficiently computed.  At the same time, developing and extending UQ methods to take better 
advantage of derivative information will broaden the universe of problems for which 
computationally intensive UQ can be carried out.  Current examples of UQ methods applicable 
to large-scale computational models that take advantage of derivative information include 
normal linear approximations for inverse problems (Cacuci et al., 2005) response surface 

                                                 
1 A discussion is given in Marchuk (1995).. 
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methods (Mitchell et al., 1994), and Markov chain MC sampling techniques for Bayesian inverse 
problems (Neal, 1993; Girolami and Calderhead, 2011).  
 
Finding:  There is potential for significant benefit from research and development in the 
compound area of (1) extracting derivatives and other features from large-scale computational 
models and (2) developing UQ methods that efficiently use this information. 
 
 
4.4 CHOOSING INPUT SETTINGS FOR ENSEMBLES OF COMPUTER RUNS 
 

An important decision in an exploration of the simulation model is the choice of simulation 
runs (i.e., experimental design) to perform.  Ultimately, the task at hand is to provide an estimate 
of some feature of the computer model response as efficiently as possible.  As one would expect, 
the optimal set of model evaluations is related to the specific aims of the experimenter. 

For physical experiments, there are three broad principles for experimental design: 
randomization, replication, and blocking.2  For deterministic computer experiments, these issues 
do not apply—replication, for example, is just wasted effort.  In the absence of prior knowledge 
of the shape of the response surface, however, a simple rule of thumb worth following is that the 
design points should be spread out to explore as much of the input region as possible.  

Current practice for the design of computer experiments identifies strategies for a variety of 
objectives.  If the goal is to identify the active factors governing the system response, one-at-a-
time designs3 are commonly used (Morris, 1991).  For computer-model emulation, space-filling 
designs (Johnson and Schneiderman, 1991), and Latin hypercube designs (McKay et al., 1979) 
and variants thereof (Tang, 1993; Lin et al., 2010) are good choices.  The designs used for 
building emulators are often motivated by space-filling and projection properties that are 
important for quasi-MC studies (Lemieux, 2009).  In studies in which the goal is to estimate a 
feature of the computer-model response surface, such as a global maximum or level sets, 
sequential designs have proven effective (Ranjan et al., 2008).  In these cases, one is usually 
attempting to select new simulator trials that aim to optimally improve the estimate of the feature 
of interest rather than the estimate of the entire response surface.  For SA, common design 
strategies include fractional factorial and response-surface designs (Box and Draper, 2007), as 
well as Morris’s one-at-a-time designs and other screening designs (e.g., Saltelli and Sobol, 
1995).  The use of adaptive strategies for the larger V&V problem is discussed in Chapter 5.   

 
 

4.5 ELECTROMAGNET INTERFERENCE IN A TIRE PRESSURE SENSOR: CASE 
STUDY 

 
4.5.1  Background 

  
The proper functioning of electronic communication, navigation, and sensing systems often 

is disturbed, upset, or blocked altogether by electromagnetic interference (EMI) viz, natural or 
man-made signals that are foreign to the systems’ normal mode of operation.  Natural EMI 

                                                 
2 Blocking is the arrangement of experimental units into groups. 
3 One-at-a-time designs are designs that vary one variable at a time. 
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sources include atmospheric charge/discharge phenomena such as lightning and precipitation 
static.  Man-made EMI can be intentional—arising from jamming or electronic warfare—or 
unintentional, resulting from spurious electromagnetic emissions originating from other 
electronic systems.  

To guard mission-critical electronic systems against interference and ensure system 
interoperability and compatibility, engineers employ a variety of electromagnetic shielding and 
layout strategies to prevent spurious radiation from penetrating into, or escaping from, the 
system.  This practice is especially relevant for consumer electronics subject to regulation by the 
Federal Communications Commission. In developing EMI mitigation strategies, it is important 
to recognize that many EMI phenomena are stochastic in nature.  The degree to which EMI 
affects a system’s performance is influenced by its electromagnetic environment, e.g., its 
mounting platform and proximity to natural or man-made sources of radiation.  Unfortunately, a 
system’s electromagnetic environment oftentimes is ill-characterized at the time of design.  The 
uncertainty in the effect of EMI on a system’s performance is further exacerbated by variability 
in its electrical and material component values, and geometric dimensions.  

 
4.5.2  The Computer Model  
 

Although the EMI compliance of a system prior to deployment or mass production always 
is verified experimentally, engineers increasingly rely on modeling and simulation to reduce 
costs associated with the building and testing of prototypes early in the design process.  EMI 
phenomena are governed by Maxwell’s equations.  These equations have astonishing predictive 
power, and their reach extends far beyond EMI analysis.  Indeed, Maxwell’s equations form the 
foundation of electrodynamics and classical optics and the underpinnings of many electrical, 
computer, and communication technologies.  Fueled by advances in both algorithms and 
computer hardware, Maxwell equation solvers have become indispensable in scientific and 
engineering disciplines ranging from remote sensing and biomedical imaging to antenna and 
circuit design, to name but a few.  

The application of VVUQ concepts to the statistical characterization of EMI phenomena 
described below leverages an integral equation-based Maxwell equation solver.  The solver 
accepts as input a CAD description of a system’s geometry along with its external excitation, and 
returns a finite-element approximation of the electrical currents on the system’s conducting 
surfaces, shielding enclosures, printed circuit boards, wires/cables, and dielectric (plastic) 
volumes (Bagci et al., 2007).  To enable the simulation of EMI phenomena on large- and multi-
scale computing platforms, the solver executes in parallel and leverages fast and highly accurate 
O[N log(N)] convolution methods, causing its computational cost to scale roughly linearly with 
the number of unknowns in the finite-element expansion.  To facilitate the characterization of 
real-world EMI phenomena, the solver interfaces with a Simulated Program with Integrated 
Circuit Emphasis (SPICE)4-based circuit solver that computes node voltages on lumped element 
circuits that model electrically small components.  Finally, to allow for the characterization of a 
“system of systems,” the Maxwell equation solver interfaces with a cable solver that computes 
transmission-line voltages and currents on transmission lines interconnecting electronic 
(sub)systems (Figure 4.2). 

                                                 
4 SPICE is a general-purpose open-source analog electronic circuit simulator. 
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FIGURE 4.2.  Hybrid electromagnetic interference analysis framework composed of Maxwell 
equation, circuit, and cable solvers. 
 

The application of this hybrid analysis framework to the statistical characterization of EMI 
phenomena in real-world electronic systems is illustrated by means of a tire pressure monitoring 
(TPM) system (Figure 4.3).  TPM systems monitor the air pressure of vehicle tires and warn 
drivers when a tire is under-inflated.  The most widely used TPM system uses a small battery-
operated sensor-transponder mounted on a car’s tire rim just behind the valve stem.  The sensor-
transponder transmits information on the tire pressure and temperature to a central TPM receiver 
mounted on the body of the car.  In this case study, the strength of the received signal when the 
system is subject to EMI originating from another nearby car using the same system is 
characterized.  The received signal depends on the relative position of the two cars, described by 
seven parameters: the rotation and steering angles of the wheels of both cars carrying the TPM 
transponders, the height of the car bodies with respect to their wheel base, and the relative 
position of the cars with respect to each other. 

In principle, statistics pertaining to the strength of the received signal can be deduced by an 
MC method, namely by repeatedly executing the Maxwell equation solver for many realizations 
of the random parameters sampled with respect to their probability distribution functions, which 
here are assumed to be uniform.  Unfortunately, while such an MC method is straightforward to 
implement, for the problem at hand it requires hundreds of thousands of deterministic code 
executions to converge.  The slow convergence of the MC method combined with the fact that 
execution of the deterministic Maxwell equation solver for the TPM problem requires roughly 1 
hour of CPU time all but rules out its direct application. 

 
4.5.3  Robust Emulators 

 
To avoid the pitfalls associated with the direct application of MC, an emulator (or surrogate 

model) for the strength of the received TPM signal (the QOI) as a function of the seven input 
parameters was constructed for this study.  The emulator provides an accurate approximation of 
the received signal for all combinations of the parameters, yet can be evaluated in a fraction of 
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the time required for executing the Maxwell equation solver.   The emulator thus enables the 
cost-effective, albeit indirect, application of MC to the statistical characterization of the received 
TPM signal.  In this case study, the emulator was constructed by means of a multi-element 
stochastic collocation (ME-SC) technique that leverages generalized polynomial chaos (gPC) 
expansions to represent the received signal (Xiu, 2007; Agarwal and Aluru, 2009).  

The ME-SC method is an extension of the basic SC method, which approximates a selected 
QOI (in this case the received TPM signal) by polynomials spanning the entire input parameter 
space.  The SC method constructs these polynomials by calling a deterministic simulator—here a 
Maxwell solver—to evaluate the QOI for combinations of random inputs specified by 
collocation points in the seven-dimensional input space.  Unfortunately, basic SC methods 
oftentimes become impractical and inaccurate for outputs that vary rapidly or non-smoothly with 
changes in the input parameters, because their representation calls for high-order polynomials.  
Such is the case in EMI analysis, in which voltages across system pins and currents on circuit 
traces and the received TPM signal strength, behave rapidly and sometimes quasi-chaotically in 
the input space.  Fortunately, extensions to SC methods have been developed that remain 
efficient and accurate for modeled outputs with non-smooth and/or discontinuous dependencies 
on the inputs.  The ME-SC method is one of them.  It achieves its efficiency and accuracy by 
adaptively dividing the input space into subdomains based on the decay rates of the outputs’ 
local variances and constructing separate polynomial approximations for each subdomain 
(Agarwal and Aluru, 2009).  

The use of emulators adds uncertainty to the process of statistically characterizing EMI 
phenomena for which it is often difficult to account.  Indeed, the construction of the emulator by 
means of ME-PC methods involves a greedy search for a sparse basis for the random inputs.  
When applied to complex, real-world problems, this search is not guaranteed to converge or to 
yield an accurate representation of the QOI.  In the context of EMI analysis, emulator techniques 
often are applied to simple toy problems that qualitatively relate to the real-world problem at 
hand, yet allow for an exhaustive canvasing of input space.  If and when the method performs 
well on the toy problem, it is then applied to more complex, real-world scenarios, often without 
looking back.     

 
4.5.4  Representative Result 

 
The ME-SC emulator models the signal strength in the TPM receiver in one car radiated by 

simultaneously active sensor-transponders in both cars.  Construction of the ME-SC emulator 
required 545 calls of the Maxwell equation solver, a very small fraction of the number of calls 
required in the direct application of MC.  The relative accuracy of the ME-SC emulator with 
respect to the signal strength predicted by the Maxwell equation solver was below 0.1 percent for 
each of the 545 system configurations in the seven-dimensional input space.  The cost of 
applying MC to the emulator is negligible compared to that of a single call to the Maxwell 
equation solver.  Figure 4.3 (b) shows the cumulative distribution function (cdf) of the received 
signal (QOI) and compares it to the cdf produced with only one car present.  The presence of the 
second car does not substantially alter the cdf for small values of the received signal.  It does 
substantially increase the maximum possible received signal, albeit not enough to cause system 
malfunction.   
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(a)                                                                               (b) 

FIGURE 4.3  (a) Two cars with tire pressure monitoring (TPM) systems mounted on their front-
passenger-side wheel rims. (b) Comparison of cumulative distribution functions of the TPM 
received signal on one car, without (k = 1) and with (k = 2) the second car present. 
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5   Model Validation and Prediction 

 
5.1   INTRODUCTION 

 
From a mathematical perspective, validation is the process of assessing whether or not the 

quantity of interest (QOI) for a physical system is within some tolerance—determined by the 
intended use of the model—of the model prediction.  Although “prediction” sometimes refers to 
situations where no data exists, in this report it refers to the output of the model in general. 

In simple settings validation could be accomplished by directly comparing model results to 
physical measurements for the QOI and computing a confidence interval for the difference, or 
carrying out a hypothesis test of whether or not the difference is greater than the tolerance (see 
Oberkampf and Roy, 2010, Chapter 12).  In other settings, a more complicated statistical 
modeling formulation may be required to combine simulation output, various kinds of physical 
observations, and expert judgment to produce a prediction with accompanying prediction 
uncertainty, which can then be used for the assessment.  This more complicated formulation can 
also produce predictions for system behavior in new domains where no physical observations are 
available (see Bayarri et al., 2007a; Wang et al., 2009; or the case studies of this chapter). 

Assessing prediction uncertainty is crucial for both validation (which involves comparison 
with measured data) and prediction of yet-unmeasured QOIs.  This uncertainty typically comes 
from a number of sources, including: 

 
• Input uncertainty—lack of knowledge about parameters and other model inputs (initial 

conditions, forcings, boundary values, and so on); 
• Model discrepancy—the difference between model and reality (even at the best, or most 

correct, model input settings); 
• Limited evaluations of the computational model; and 
• Solution and coding errors. 
 
In some cases, the verification effort can effectively eliminate the uncertainty due to 

solution and coding errors, leaving only the first three sources of uncertainty.  Likewise, if the 
computational model runs very quickly, one could evaluate the model at any required input 
setting, eliminating the need to estimate what the model would have produced at an untried input 
setting. 

The process of validation and prediction, explored in previous publications (e.g., Klein et 
al., 2006; NRC, 2007, Chapter 4), is described in this chapter from a more mathematical 
perspective.  The basic process includes identifying and representing key sources of uncertainty; 
identifying physical observations; experiments, or other information sources for the assessment; 
assessing prediction uncertainty; assessing the reliability or quality of the prediction, supplying 
information on how to improve the assessment, and communicating results. 

Identifying and representing uncertainties typically involves sensitivity analysis to 
determine which features or inputs of the model affect key model outputs.  Once they are 
identified, one must determine how best to represent these important contributors to 
uncertainty—parametric representations of input conditions, forcings, or physical modeling 
schemes (e.g., turbulent mixing of fluids).  In addition to parametric forms, some analyses might 
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assess the impact of alternative physical representations/schemes within the model.  If solution 
errors or other sources of model discrepancy are likely to be important contributors to prediction 
uncertainty, their impact must also be captured in some way. 

The available physical observations are key to any validation assessment.  In some cases 
these data are observational, provided by nature (e.g., meteorological measurements, supernova 
luminosities); in other cases, data come from a carefully planned hierarchy of controlled 
experiments (e.g., the PECOS case study in Section 5.9).  In addition to physical observations, 
information may come from the literature or expert judgment that may incorporate historical data 
or known physical behavior. 

Estimating prediction uncertainty requires the combination of computational models, 
physical observations, and possibly other information sources.  Exactly how this estimation is 
carried out can range from very direct, as in the weather forecasting example in Figure 5.1, to 
quite complicated, as described in the case studies in this chapter.  In these examples, some 
physical observations are used to refine or constrain uncertainties that contribute to prediction 
uncertainty.  Estimating prediction uncertainty is a vibrant research topic whose methods vary 
depending on the features of the problem at hand. 

For any prediction, assessing the quality, or reliability, of the prediction is crucial.  This 
concept of prediction reliability is more qualitative than is prediction uncertainty.  It includes 
verifying the assumptions on which an estimate is based, examining the available physical 
measurements and the features of the computational model, and applying expert judgment.  For 
example, well-designed sets of experiments can lead to stronger statements regarding the quality 
and reliability of more extrapolative predictions, as compared to observational data from a single 
source.  Here the concept of “nearness” of the physical observations to the predictions of the 
intended use of the model becomes relevant, as does the notion of the domain of applicability for 
the prediction.  However, while most practitioners recognize that this concept and notion are 
important, rigorous mathematical definitions and quantifications remain an unsolved problem. 

In some validation applications, an opportunity exists to carry out additional experiments to 
improve the prediction uncertainty and/or the reliability of the prediction.  Estimating how 
different forms of additional information would improve predictions or the validation assessment 
can be an important component of the validation effort, guiding decisions about where to invest 
resources in order to maximize the reduction of uncertainty and/or an increase in reliability. 

Communicating the results of the prediction or validation assessment includes both 
quantitative aspects (the predicted QOI and its uncertainty) and qualitative aspects (the strength 
of the assumptions on which the assessment is based).  While the communication component is 
not fundamentally mathematical, effective communication may depend on mathematical aspects 
of the assessment. 

The various tasks mentioned in the preceding paragraphs give a broad outline of validation 
and prediction.  Exactly how these tasks are carried out depends on features of the specific 
application.  The list below covers a number of important considerations that will have an impact 
methods and approaches for carrying out validation and prediction: 

 
 The amount and relevance of the available physical observations for the assessment, 
 The accuracy and uncertainty accompanying the physical observations, 
 The complexity of the physical system being modeled, 
 The degree of extrapolation required for the prediction relative to the available physical 

observations and the level of empiricism encoded in the model, 
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 The computational demands (run time, computing infrastructure) of the computational 
model, 

 The accuracy of the computational model’s solution relative to that of the mathematical 
model (numerical error),  

 The accuracy of the computational model’s solution relative to that of the true physical 
system (model discrepancy), 

 The existence of model parameters that require calibration using the available physical 
observations, and 

 The availability of alternative computational models to assess the impact of different 
modeling schemes or physics implementations on the prediction. 

 
These considerations are discussed throughout this chapter, which describes key 

mathematical issues associated with validation and prediction, surveying approaches for 
constraining and estimating different sources of prediction uncertainty.  Specifically, the chapter 
briefly describes issues regarding measurement uncertainty (Section 5.2), model calibration and 
parameter estimation (Section 5.3), model discrepancy (Section 5.4), and the quality of 
predictions (Section 5.5), focusing on their impact on prediction uncertainty.  These concepts are 
illuminated by two simple examples (Boxes 5.1 and 5.2) that extend the ball-drop example in 
Chapter 1, and by two case studies (Sections 5.6 and 5.9).  Leveraging multiple computational 
models (Section 5.7) and multiple sources of physical observations (Section 5.8) is also covered, 
as is the use of computational models for aid in dealing with rare, high-consequence events 
(Section 5.10).  The chapter concludes with a discussion of promising research directions to help 
address open problems. 

 
5.1.1  Note Regarding Methodology 

 
Most of the examples and case studies presented in this chapter use Bayesian methods 

(Gelman et al., 1996) to incorporate the various forms of uncertainty that contribute to the 
prediction uncertainty.  Bayesian methods require a prior description of uncertainty for the 
uncertain components in a formulation.  The resulting estimates of uncertainty—for parameters, 
model discrepancy, and predictions—will depend on the physical observations and the details of 
the model formulation, including the prior specification.  This report does not go into such 
details but points to references on modeling and model checking from a Bayesian perspective 
(Gelman et al., 1996; Gelfand and Ghosh, 1998).  While the Bayesian approach is prevalent in 
the VVUQ literature, effectively dealing with many issues discussed here, the use of these 
methods in the examples and case studies in this chapter should not be seen as an exclusive 
endorsement of Bayesian methods over other approaches for calculating with and representing 
uncertainty, such as likelihood (Berger and Wolpert, 1988), Dempster-Shafer theory (Shafer, 
1976), possibility theory (Dubois et al., 1988), fuzzy logic (Klir and Yuan, 1995), probability 
bounds analysis (Ferson et al., 2002), and so on.  The committees believe that relevance of the 
main issues discussed in this chapter is not specific to the details of how uncertainty is 
represented. 

 
5.1.2 The Ball-Drop Example Revisited 
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To elaborate these ideas, an extension of the simple ball-drop example from Box 1.1 in 
Chapter 1 is used; the experiment here includes multiple types of balls (Box 5.1).  Drop times for 
balls of various radii and densities are considered.  The basic model that assumes only 
acceleration due to gravity is clearly insufficient when considering balls of various sizes and 
densities, suggesting the need for a model that explicitly accounts for drag due to air friction.  
This new model describes initial conditions for a single experiment, with the radius of the ball 
Rball and the density of the ball ρball.  The model also has two parameters—the acceleration due 
to gravity, g, and a friction constant, CD—that can be further constrained, or calibrated, usin
experimental measurements.  Of course, treating the acceleration due to gravity g as something 
uncertain may not be appropriate in a serious application, since this quantity has been determined 
experimentally with very high accuracy.  The motivation for treating g as uncertain is to illustrate 
issues regarding uncertain physical constants, which are common in many applications. 

g 
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BOX 5.1  The Ball-Drop Experiment Using a Variety of Balls 
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In addition to the measurements of drop times for the bowling b
we now have measurements for a basketball and baseball as well. 
The measured drop times are normally distributed about the true 
time, with a standard deviation of 0.1 seconds.  The QOI is the 
drop time for the softball—an untested ball—at a height of 100 m.  
This QOI is an extrapolation in two ways: no drops over 60 m have
been carried out; no measurements have been obtained for a 
softball. 

 

all, 

 

t 

 
 
 

The conceptual/mathematical model (above) accounts for 
acceleration due to gravity g and air resistance using a standard 
model.  Air resistance depends on the radius and density of the 
ball (Rball, ρball), as well as the density of air (ρair).  Figure (a) 
shows various balls and their position in radius-density space.  I
is assumed that air density is known. 
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(c) 

In addition to depending on the descriptors of the ball (Rball, ρball), the 
model also depends on two parameters – the acceleration of gravity g and a 
dimensionless friction coefficient CD – which needs to be constrained with 
measurements.  Initial ranges of 8 ≤ g ≤ 12 and 0.2 ≤ CD  ≤ 2.0 are specified 
for the two model parameters.  Measured drop times from heights of 20, 40 
and 60m are obtained for the basketball and baseball; measured drop times 
from heights of 10, 20,…, 60m are obtained for the bowling ball.  These 
measurements constrain the uncertainty of the parameters to the ellipsoidal 
region shown in the plot on the left.  

(d) 
 

Figure (d) shows initial and 
constrained prediction 
uncertainties for the four 
different balls using the 
mathematical model (b).  The 
light lines correspond to the 
parameter settings depicted by 
the points in (c).  The dark 
region shows prediction 
uncertainty induced by the 
constrained uncertainty for the 
parameters. A prediction (with 
uncertainty) for the softball is 
given by the spread of the dark 
region of the rightmost frame.  

 
 
 

However, the model has never been tested against drops higher than 60 m.  It has also never been directly compared to 
any softball drops.  From (a), one could argue that the softball is at the interior of the (Rball, ρball)-space spanned by the 
basketball, baseball, and bowling ball, leading one to trust the prediction (and uncertainty) for the softball at 40 m, or 
even 100 m.  However, the softball differs from these other balls in more ways than just radius and density (e.g., 
surface smoothness).  How should one modify predictions and uncertainties to account for these flavors of 
extrapolation?  This is an open question in V&V and UQ research. 

(b)
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Using measured drop times for three balls—a bowling ball, baseball, and basketball—the 
object is to predict the drop time for a softball at 100 meters (m).  Hence the quantity of interest 
(QOI) is the drop time for a softball dropped from a height of 100 m.  Drops are conducted from 
a 60 m tower.  The required prediction is an extrapolation in two ways: no drops over 60 m have 
been carried out, and no drop-time measurements have been obtained for the softball.  Section 
5.5 looks more closely at how validation and uncertainty quantification (UQ) approaches depend 
on the availability of measurements and the degree of extrapolation associated with the 
prediction.  

Initially, the uncertainty about the uncertain model parameters is that 8 < g < 12, and 0.2 < 
CD < 2, which is given by Box 5.1.b.  Model predictions can be made using various (g, CD) 
values over this region (the dots in Box 5.1.c); the resulting drop-time predictions are given by 
the light lines in Box 5.1.d.  This uncertainty is obtained by simple forward propagation of the 
uncertainty in g and CD, as described in Section 4.2 in Chapter 4.  If the validation assessment 
were a question of whether or not the model can predict the 100 m softball drop time to within 
 ± 2 seconds, or whether the drop time will be larger than 10 seconds, this preliminary 
assessment might be sufficient.  If more accuracy is required, the uncertainty in the parameters 
(g, CD) can be further constrained using the observed drop times for the different balls, as given 
by the ellipse in Box 5.1.c, showing a 95 percent probability range for (g, CD).  This process of 
constraining parameter uncertainties using experimental measurements is called model 
calibration, or parameter estimation, and is discussed in more detail in Section 5.3.  Physical 
measurements are uncertain, each giving an imperfect interrogation of the physical system, and 
this uncertainty affects how tightly these measurements constrain parameter uncertainty.  
Measurement uncertainty also plays an important role in the comparison of model prediction to 
reality.  This topic is discussed briefly in Section 5.2. 

Although the ball-drop example used here does not show any evidence of a systematic 
discrepancy between model and reality, such discrepancies are common in practice.  Once 
identified and quantified, systematic model discrepancy can be accounted for to improve the 
model-based predictions (e.g., a computational-model prediction that is systematically 10 percent 
too low for a given QOI can simply be adjusted up by 10 percent to predict reality more 
accurately).  Section 5.4 discusses the related idea of making the best predictions that one can 
with an imperfect model (and quantifying their uncertainties), embedded within a statistical 
framework aided by subject-matter knowledge and available measurements.  

The relevant body of knowledge in the ball-drop example consists of measurements from 
three basketball drops, three baseball drops, and six bowling-ball drops, along with the 
mathematical and computational models.  The friction term in the model is an effective physics 
model, slowing the ball as it drops and attempting to capture small-scale effects of airflow 
around the ball.  Experience suggests that the friction constant depends on the velocity and 
smoothness of the ball, as well as on properties of the air.  Ideally, part of the assessment of the 
uncertainty about the QOI (softball drop time from 100 m) will include at least a qualitative 
assessment of the appropriateness of using this form of friction model, with a single value for 
CD, for these drops.  This notion of assessing the reliability, or quality, of a model-based 
prediction is discussed in Section 5.5. 

More generally, the body of knowledge could include a variety of information sources, 
ranging from experimental measurements to expert judgment, to results from related studies.  
Some of these information sources may be used explicitly, constraining parameter uncertainties, 
estimating variances, or describing prediction uncertainties.  Other information sources might 
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lend evidence to support assumptions used in the analysis, such as the adequacy of the model for 
predictions that move away from the conditions in which experimental measurements are 
available. 

Ideally, the domain of applicability for this model in predicting drop times of various balls 
will also be specified.  For example, given the current body of knowledge, a conservative domain 
of applicability might include only basketballs, baseballs, and bowling balls dropped from 
heights between 10 m and 60 m.  In this case, one would not be willing to use the model-based 
uncertainty given in Box 5.1 to characterize the drop time for a softball at 40 m, let alone 100 m.  
A more liberal definition of the domain of applicability might be any ball with a radius-density 
combination in the interior of the basketball-baseball-bowling ball triangle in Box 5.1.a.   

Alternatively, one might also consider what perturbations of a basketball, say, would be 
included in this domain of applicability.  Should predictions and uncertainties for a slightly 
smaller basketball be trusted?  What about a slightly less dense basketball?  At what density 
should the predictions and uncertainties no longer be trusted?  Put differently, can we assess 
what perturbations of a basketball are sufficiently “near” to the tested basketball to result in 
accurate predictions and uncertainty estimates?  Often, a sensitivity analysis (SA) can help 
address the question—this example informing trust in model-based predictions and uncertainties 
for balls as density decreases.  One might also consider conditions that are not accounted for in 
the model.  For example, should the drop times of a rubber basketball differ from those of a 
leather one?  Does ball texture affect drop time?  Without additional experiments, such model-
applicability issues must necessarily be addressed with expert judgment or other information 
sources.  Quantifying the impact of such issues remains an unsolved problem. 

In general, the domain of applicability describes the conditions over which the predictions 
and uncertainties derived from a computational model are reliable.  This should include 
descriptors of the initial conditions that are accounted for in the model, as well as those that are 
not.  It might also include descriptors of the geometric and/or physical complexity of the system 
for which the prediction is being made.  Such considerations are crucial for designing a series of 
validation experiments to help map out this domain of applicability.  Defining this domain of 
applicability depends on the available body of knowledge, including subject-matter expertise, 
and involves a number of qualitative features about the inference being made.  

 
5.1.3 Model Validation Statement 

 
In summary, validation is a process, involving measurements, computational modeling, and 

subject-matter expertise, for assessing how well a model represents reality for a specified QOI 
and domain of applicability.  Although it is often possible to demonstrate that a model does not 
adequately reproduce reality, the generic term validated model does not make sense.  There is at 
most a body of evidence that can be presented to suggest that the model will produce results that 
are consistent with reality (with a given uncertainty).   

 
Finding: A simple declaration that a model is “validated” cannot be justified.  Rather, a 
validation statement should specify the QOIs, accuracy, and domain of applicability for which it 
applies.  

 
The body of knowledge that supports the appropriateness of a given model and its ability to 

predict the QOI in question, as well as the key assumptions used to make the prediction, is 
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important information to include in the reporting of model results.  Such information will allow 
decision makers to better understand the adequacy of the model, as well as the key assumptions 
and data sources on which the reported prediction and uncertainty rely. 

The degree to which available physical data are relevant to the prediction of interest is a 
key concept in the verification and validation (V&V) literature (Easterling, 2001; Oberkampf et 
al., 2004; Klein et al., 2006).  How one uses the available body of knowledge to help define this 
domain of validity is part of how the argument for trust in model-based prediction is constructed.  
This topic is explored further in Section 5.5.    

 
 

5.2 UNCERTAINTIES IN PHYSICAL MEASUREMENTS 
 
Throughout this chapter, reference is continually made to learning about the computational 

model and its uncertainties through comparing the predictions of the computational model to 
available physical data relevant to the QOI.  A complication that typically arises is that the 
physical measurements are themselves subject to uncertainties and possibly bias.  In the ball-
drop example in Box 5.1, for instance, there were three multiple observations for each type of 
ball-drop, and these were believed to be normally distributed, centered at the true drop time and 
with standard deviation 0.1 seconds.  The uncertainty in the physical measurements was part of 
the reason that the parameters in the example were constrained only to the ellipse in Box 5.1.c 
and not to a smaller area. 

Although the characterization of such measurement uncertainty is often a crucial part of a 
VVUQ analysis, the issue is not highlighted in this report because such characterization is the 
standard domain of statistics, and vast methodology and experience exist for characterizing such 
uncertainty (Youden, 1961, 1972; Rabinovich, 1995; Box et al., 2005).  However, there are 
several issues that must be kept in mind when obtaining physical data for use in VVUQ analyses. 

For experiments that have not yet been performed, the design of the experiment for 
collecting the physical data should be developed in cooperation with the VVUQ analyst and the 
decision maker to provide maximum VVUQ benefit when practical.  Experimental data are often 
expensive (as when each data point arises from crashing a prototype vehicle, for instance) and 
should be chosen to provide optimal information from the perspective of the desired calibration, 
VVUQ analysis, and/or the prediction for the computational model. 

One particularly relevant consideration in the context of VVUQ is the desirability of 
replications1 of the physical measurements—that is, of obtaining repeat measurements under the 
same conditions (same model-input values).  This might seem counterintuitive from the 
perspective of the computational model; if the analyst is trying to judge how well the model 
predicts reality, observing reality at as many input values as possible would seem logical.  When 
the physical data are subject to measurement error, however, the picture changes, because it is 
first crucial to learn how well the physical data represent reality.  If the physical data do not 
constrain reality significantly at any input values, little has been learned that will help in judging 
the fidelity of the computational model with respect to reality.   

If the measurement error of the physical data and variability of the physical system are 
known (e.g., the data has a known standard deviation) and are judged to be small enough to 

                                                 
1 Here we mean genuine replicates as described in Box and Draper (1987, p.71): “Replicate runs must be subject to 
all the usual setup errors, sampling errors, and analytical errors which affect runs made at different conditions.  
Failure to achieve this will typically cause underestimation of the error and will invalidate the analysis.” 
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adequately constrain reality, then replicate observations are perhaps not needed.  However, it is 
wise to view the presumption of known standard deviation with healthy skepticism.  When the 
magnitude of the measurement error is derived from the properties of measurement apparatus 
and theoretical considerations, it is common to miss important sources of variation and bias that 
are present in the measurement process.  Hence, resources may be better spent obtaining 
replicate observations, rather than attempting to account for every possible source of uncertainty 
present in a single measurement/experiment.  One may be able to afford only enough physical 
data with replications to adequately constrain reality at a few input values, but knowing reality, 
with accurately quantified uncertainty, at a few input values is often better than having a vague 
idea about reality at many input values. 

One does not always have control over the process of obtaining physical measurements.  
They may have been based on historical experiments or observations, for which important details 
may be unknown.  They may have arisen from auxiliary inverse-problem analyses (e.g., inferring 
a quantity such as temperature or contaminant concentration from remotely sensed signals).  This 
inexactness can be problematic from a number of perspectives, including the possibility that 
uncertainties in the physical data may have been estimated poorly, or not given at all.  In such 
cases it may be fruitful to include this auxiliary inverse problem as part of the validation and 
prediction process. 

A significant issue that can arise is possible bias in the physical data, wherein a common 
error induces a similar effect on all of the measurements.  In the ball-drop example, for instance, 
a bias in the physical observations would be present if the stopwatch used to time all of the drops 
were systematically slow.  Similarly, if each ball were released with a slight downward velocity, 
then measured drop times would be systematically too short.  

The methodological issue of how to incorporate uncertainty in the physical data into the 
UQ analysis is also important.  Standard statistical techniques can allow one to summarize the 
physical data in terms of the constraints that they place on reality, but a VVUQ analysis requires 
interfacing this uncertainty with the computational model, especially if calibration is also being 
done based on the physical data.  Bayesian analysis (discussed in Section 5.3) has the appeal of 
providing a direct methodology for such incorporation of uncertainty.   

 
 

5.3 MODEL CALIBRATION AND INVERSE PROBLEMS 
 
Many applications in VVUQ use physical measurements to constrain uncertain parameters 

in the computational model.  A simple example is given in Box 5.1.c, in which measured drop 
times are used to reduce the uncertainty in the two model parameters—g and CD.  This basic task 
of model calibration is a standard problem in statistical inference.  Model calibration applications 
may involve parameters ranging from one or two, as in Box 5.1, to thousands or millions, as is 
often the case when one is inferring heterogeneous fields (material properties, initial conditions, 
or source terms, e.g. Akcelik et al., 2003, 2005).  

The problem of estimating from observations the uncertain parameters in a simulation 
model is fundamentally an inverse problem.  The forward problem seeks to predict output 
observables (such as seismic ground motion at seismometer locations) given the parameters 
(such as the heterogeneous elastic-wave speeds and density throughout a region of interest) by 
solving the governing equations (such as the elastic-wave equations).  The forward problem is 
usually well posed (the solution exists, is unique, and is stable to perturbations in inputs), causal 
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(later-time solutions depend only on earlier time solutions), and local (the forward operator 
includes derivatives that couple nearby solutions in space and time).  

The inverse problem reverses this relationship, however, by seeking to determine parameter 
values that are consistent with particular measurements.  Solving inverse problems can be very 
challenging for the following reasons: (1) the mapping from observations (i.e., measurements) to 
parameters may not be one to one, particularly when the number of parameters is large and the 
number of measurements is small; (2) small changes in the measurement value may lead to 
changes in many, or all parameters, particularly when the forward model is nonlinear; and (3) 
typically, all that is available to the analyst is a computational model that approximately solves 
the forward problem. 

In simple model calibration, or inverse problems, post-calibration parameter uncertainty 
can be described by a “best estimate” of uncertainty determined by a covariance matrix, 
characterizing variance and correlations in the parameter uncertainties.  When the solution to the 
inverse problem is not unique, and/or when the measurement errors have a nonstandard form, 
determining even a best estimate can be problematic.  The popular approach to obtaining a 
unique “solution” to the inverse problem in these circumstances is to formulate it as an 
optimization problem—minimize the sum of two terms: the first is a combination of the misfit 
between observed and predicted outputs in an appropriate norm, and the second is a 
regularization term that penalizes unwanted features of the parameters.  This is often called 
Occam’s approach—find the “simplest” set of parameters that is consistent with the measured 
data.  The inverse problem thus leads to a nonlinear optimization problem in which the forward 
simulation model is embedded in the misfit term.  When the forward model takes the form of 
partial differential equations (PDEs) or some other expensive model, the result is an optimization 
problem that may be extremely large scale in the state variables (displacements, temperatures, 
pressure, and so on), even when the number of inversion parameters is small.  More generally, 
uncertain parameters can be taken from numbers on a continuum (such as initial or boundary 
conditions, heterogeneous material parameters, or heterogeneous sources) that, when discretized, 
result in an inverse problem that is very large scale in the inversion parameters as well. 

An estimation of parameters using the regularization approach to inverse problems as 
described above will yield an estimate of the “best” parameter values that minimize the 
combined misfit and penalty function. However, in UQ, the analyst is interested not just in point 
estimates of the best-fit parameters, but also in a complete statistical description of all parameter 
values that are consistent with the data.  The Bayesian approach does this by reformulating the 
inverse problem as a problem in statistical inference, incorporating uncertainties in the 
measurements, the forward model, and any prior information about the parameters.  The solution 
of this inverse problem is the set of so-called posterior probability densities of the parameters, 
describing updated uncertainty in the model parameters (Kaipio and Somersalo, 2005; Tarantola, 
2005).  Thus the resulting uncertainty in the model parameters can be quantified, taking into 
account uncertainties in the data, uncertainties in the model, and prior information.  The term 
parameter is used here in the broadest sense and includes initial and boundary conditions, 
sources, material properties and other coefficients of the model, and so on; indeed, Bayesian 
methods have been developed to infer uncertainties in the form of the model as well (so-called 
structural uncertainties or model inadequacy are discussed in the Section 5.4). 

The Bayesian solution of the inverse problem proceeds as follows.  Let the relationship 
between model predictions of observable outputs y and uncertain input parameters θ be denoted 
by  
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y = f(θ, e) 

 
where e represents noise due to measurement and/or modeling errors.  In other words, given the 
parameters θ, the function f(θ) invokes the solution of the forward problem to yield y, the 
predictions of the observables.  Suppose that the analyst has a prior probability density πpr(θ), 
which encodes the prior information about the unknown parameters (i.e., independent of 
information from the present observations).  Suppose further that the analyst can build—using 
the computational model—the likelihood function π(yobs|θ), which describes the conditional 
probability that the parameters θ gave rise to the actual measurements yobs.  Then Bayes’ 
theorem expresses the posterior probability density of the parameters, πpost, given the data yob

the conditional probabili
s, as 

ty  
 

                       πpost(θ): = π(θ׀y)  πpr(θ)π(yobs׀θ).                            (5.1)  
 

The expression (5.1) provides the statistical solution of the inverse problem as a probability 
density for the model parameters .   

Although it is easy to write down expressions for the posterior probability density such as 
expression 5.1, making use of these expressions poses a challenge owing to the high 
dimensionality of posterior probability density (which is a surface of dimension equal to the 
number of parameters), and because the solution of the forward problem is required at each point 
on this surface.  Straightforward grid-based sampling is out of the question for anything other 
than a few parameters and inexpensive forward simulations.  Special sampling techniques, such 
as Markov chain Monte Carlo (MCMC) methods, have been developed to generate sample 
ensembles that typically require many fewer points than are required for grid-based sampling 
(Kaipio and Somersalo, 2005; Tarantola, 2005).  Even so, MCMC approaches become 
intractable as the complexity of the forward simulations and the dimension of the parameter 
spaces increase.  The combination of a high-dimensional parameter space and a forward model 
that takes hours to solve makes standard MCMC approaches computationally infeasible. 

As discussed in Chapter 4, one of the keys to overcoming this computational bottleneck lies 
in examining the details of the forward model and effectively exploiting its structure in order to 
reduce implicitly or explicitly the dimension of both the parameter space and the state space.  
The motivation for doing so is that the data are often informative about just a fraction of the 
“modes” of the parameter field, because the inverse problem is ill-posed.  Another way of saying 
this is that the Jacobian of the parameter-to-observable map is typically a compact operator and 
thus can be represented effectively using a low-rank approximation—that is, it is often sparse 
with respect to some basis (Flath et al., 2011).  The remaining dimensions of parameter space, 
which cannot be inferred from the data, are typically informed by the prior; however, the prior 
does not require the solution of expensive forward problems and is thus usually much cheaper to 
compute.  Compactness of the parameter-to-observable map suggests that the state space of the 
forward problem can be reduced as well.  Note that although generic, regularizing priors (e.g., 
Besag et al., 1995; Kaipio et al., 2000; Oliver et al., 1997) make posterior exploration possible, 
giving useful point estimates, they may not adequately describe the uncertainty in the actual 
field.  This is common when the physical field exhibits roughness or discontinuities that are not 
allowed under the prior model used in the analysis.  In such cases, the uncertainties produced 
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from such an analysis will not be appropriate at small spatial scales.  Such difficulties can be 
overcome by specifying more realistic priors. 

A number of current approaches to model reduction for inverse problems show promise. 
These range from Gaussian process (GP) response-surface approximation of the parameter-to-
observable map (Kennedy and O’Hagen, 2001); to projection-type forward-model reductions 
(Galbally et al., 2010; Lieberman et al., 2010); to polynomial chaos (PC) approximations of the 
stochastic forward problem (Badri and Zabaras, 2004; Ghanem and Doostan, 2006; Marzouk and 
Najm, 2009); to low-rank approximation of the Hessian of the log-posterior (Flath et al., 2011; 
Martin et al., in preparation).2  Approaches that exploit multiple model resolutions have also 
proven effective for speeding up MCMC in the presence of a computationally demanding 
forward model (Efendiev et al., 2009; Christen and Fox, 2005). 

An alternative to using the standard MCMC methods on the computer model directly is to 
use an emulator (see Section 4.1.1, Computer Model Emulation) in its place.  In many cases, this 
approach alleviates the computational bottleneck caused by solving the inverse problem by 
applying MCMC to the computer model directly.  Box 5.2 shows how an emulator can reduce 
the number of computer model runs for the bowling-ball-drop application in Box 5.1. 

Here the measured drop times are governed by the unknown parameters,  (the acceleration 
due to gravity g, for this example), and also quantities, x, that can be measured or adjusted in the 
physical system.  For this example x denotes drop height, but more generally x might describe 
system geometry, initial conditions, or boundary conditions.  The relationship between 
observable outputs and uncertain input parameters , at a particular x, is now denoted by  

 
                               yobs = η(x,) + e                                                        (5.2) 

 
where e denotes the measurement error.  The computer model is exercised at a limited number of 
input configurations (x,), shown by the dots in Box 5.2(a,b,c).  Next, an emulator of the 
computational model can be constructed and used in place of the simulator (Box 5.2.b).  
Alternately, the construction of the emulator and estimation of  can be done jointly using a 
hierarchical model that specifies, say, a GP model for ( ) and treats the estimation of  as 
missing-data problem.  Inferences about the parameter , for example, can be made using its 
posterior probability distribution, usually sampled by means of MCMC (Higdon et al., 2005; 
Bayarri et al., 2007a). 

The physical observations and the computational model can be combined to estimate the 
parameter , thereby constraining the predictions of the computational model.  Looking again at 
Box 5.2.c, the probability density function (PDF) (shown by the solid curve in the center), shows 
the updated uncertainty for  after combining the computational model with the physical 
observations.  Clearly, the physical observations have greatly improved the knowledge of the 
unknown parameter, reducing the prediction uncertainty in the drop time for a bowling ball drop 
of 100 m. 

 

                                                 
2 Martin, J., L.C. Wilcox, C. Burstedde, and O. Ghattas. 2012. A Stochastic Newton MCMC Method for Large 
Scale Statistical Inverse Problems with Application to Seismic Inversion. SIAM Journal on Scientific Computing. To 
appear. 
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If the number of computer model runs were 
limited—perhaps due to computational constraints—
then an ensemble of runs could be carried out at 
different (x, θ) input settings.  Figure (b) shows model 
runs carried out over a statistical design of 20 input 
settings.  Here x denotes height and θ denotes the 
model parameter g.  The modeled drop times at 
these input settings are given by the height of the 
circle plotting symbols in Figures (a) and (b). 
 
With these 20 computer model runs, a Gaussian 
process is used to produce a probabilistic prediction 
of the model output at untried input settings (x, θ) as 
shown in Figure (c).  This emulator is used to 
facilitate the computations required to estimate the 
posterior distribution for θ, which is constrained by 
the physical observations. 
 
The Bayesian model formulation, with an emulator to 
assist with limited model runs, produces a posterior 
distribution for the unknown parameter θ (g, given 
by the blue lines of the inset figure of (d)), which 
then can be propagated through the emulator to 
produce constrained, posterior prediction 
uncertainties (blue lines).

Physical measurements (black dots) and prior 
prediction uncertainty (green lines) for the bowling 
ball drop time as a function of height (as shown in 
Box 1.1).  The experimentally measured drop times 
for drops of 10, 20, . . . , 50 meters are shown, along 
with the uncertainty due to prior uncertainty for 
gravity g is also shown in the inset figure. 

θ = g  

θ = g  

BOX 5.2 Using an Emulator for Calibration and Prediction with Limited Model Runs 

 
Finding:  Bayesian methods can be used to estimate parameters and provide companion 
measures of uncertainty in a broad spectrum of model calibration and inverse problems. 
Methodological challenges remain in settings that include high-dimensional parameter spaces, 
expensive forward models, highly nonlinear or even discontinuous forward models, and high-
dimensional observables, or in which small probabilities need to be estimated. 

 
Recommendation:  Researchers should understand both VVUQ methods and computational 
modeling to more effectively exploit synergies at their interface.  Educational programs, 
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including research programs with graduate-education components, should be designed to foster 
this understanding. 

 
 

5.4 MODEL DISCREPANCY 
 
Computer models of processes are rarely perfect representations of the real process being 

modeled; there is usually some discrepancy between model and reality.  Although few would 
disagree with this near tautology, reactions are bounded between two positions: “If it is the best 
model we can construct at the current time and with the current resources, we cannot do better 
than to simply use the model as a surrogate for reality”; and “Use of a model is never justifiable 
unless it has been ‘proven’ to be an accurate representation of reality.” 

The first position may appear attractive in certain applications in which one must do 
something (e.g., decide whether or not to evacuate because of a potential tsunami) but it often 
leaves much to be desired from a scientific standpoint.  The second position is harder to criticize 
because it seems to have the ring of scientific veracity, but it can result in doing nothing when 
something should be done.  For instance, it is unlikely that, in the near future, any climate model 
will be proven to be an accurate representation of reality, in a detailed absolute sense, yet the 
consequences of ignoring what the climate models suggest could be significant. 

Dealing with model inadequacy is the most difficult part of VVUQ.  Although one may be 
able to list the possible sources of model inadequacy, understanding their impact on the model’s 
predictions of QOIs is exceedingly difficult.  Furthermore, dealing with model inadequacy is 
arguably the most important part of VVUQ: if the model is grossly wrong because of limited 
capability in incorporating the physics, chemistry, biology, or mathematics, the fact that the other 
uncertainties in the analysis have been accounted for may be meaningless. 

Formal approaches to dealing with model inadequacy can be characterized as being in one 
of two camps, depending on the information available.  In one camp, evaluation is performed by 
comparing model output to physical data from the real process being modeled.  The common 
rationale for this philosophy is that the only way to see if a model actually works is to see if its 
predictions are correct.  This report refers to this approach as the predictive approach to 
evaluation.  The other camp focuses on the model itself, and tries to assess the accuracy or 
uncertainty corresponding to each constructed element of the model.  The common rationale for 
this philosophy is that if the model contains all of the elements of the system it represents, if all 
of these elements (including computational elements) can be shown to be correct, and if they are 
correctly coupled, then logically the model must give accurate predictions.  This report refers to 
this as the logical approach to model evaluation.  Of course, any evaluation of a given model’s 
adequacy could involve elements from each camp. 

Before discussing these formal approaches, it is important to consider the metric and 
tolerance by which model adequacy should be measured.  The obvious metric is simply accuracy 
in the prediction of the desired feature of the real process—the quantity of interest.  The point is 
that no model is likely to predict every aspect of a real process accurately, but a model may 
accurately predict a key feature of interest of the real process, to within an acceptable tolerance 
for the intended application.  Furthermore, because uncertainties abound, prediction inevitably 
has an uncertainty range attached.  Thus the prediction may be in the form of a statement such as 
this: “The real QOI will be 5 plus-or-minus 2 (with probability 0.9).”  There are many 
advantages of viewing model adequacy through such statements.  They include the following: 
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 Models rarely give highly accurate predictions over the entire range of inputs of possible 

interest, and it is difficult to characterize regions of accuracy and inaccuracy in advance. 
The type of statement given above indicates the accuracy of the predicted quantity of 
interest, and the user can decide whether the accuracy is sufficient or not. 

 The degree of accuracy in the prediction (both the 2 and the 0.9 in the statement above) 
will typically vary from one application of the computer model to another and from one 
QOI to another. The degree of accuracy that is required may also differ for different 
intended applications and different QOIs. 

 The uncertainty statements can simultaneously incorporate probabilistic uncertainty and 
structural uncertainty (also known as model bias or discrepancy). 

 
Note, in particular, that the blanket statements “The model is valid” (i.e., always valid) or 

“The model is invalid” (i.e., always invalid) are almost always devoid of useful information 
(although in some cases the latter may not be).  Keeping this metric of model validity in mind, 
there is then a formal approach to modeling inadequacy when data from the real process are 
available (Kennedy and O’Hagan, 2001; Higdon et al., 2005; Bayarri et al., 2007a).  The 
automobile-suspension case study described below makes use of this approach, which is now 
briefly outlined.  

The failure to model the system perfectly, even given the correct inputs, is due to model 
discrepancy, which often varies with the experimental conditions x.  Let us denote the 
relationship between observable outputs, y, and the parameters governing the system, (x, ), by  

 
y = f(x,, e) 

 
where e represents noise.  One formal approach for combining data from the real process with 
computer model runs (Kennedy and O’Hagan, 2001; Higdon et al., 2005; Bayarri et al., 2007a) 
views the physical observations as the sum of the computer-model output, a model inadequacy 
function, and noise.  Mathematically this is stated as 
 

yobs(x)  f (x,,e) (x, ) (x)  e 
 

where (x,) is the computer-model output with inputs (x,), and (x) is the discrepancy between 
the computer-model output and the true physical mean QOI at a particular value of x (the 
observable or adjustable system variables).  

The aim is to use realizations from the computer model and the physical observations to (1) 
solve the inverse problem, thereby estimating  ; (2) assess the model adequacy; and (3) build a 
predictive model for the system.  These goals are most frequently achieved using a Bayesian 
hierarchical model that specifies, for example, Gaussain process (GP) models for ( ) and ( ), 
and treats the estimation of  as a missing-data problem.  Prior distributions must be specified for 
the GP parameters and also for .  Sampling from the joint posterior distribution of these 
parameters is typically carried out using an MCMC algorithm, leading to estimates of all 
unknowns, including the discrepancy (x), together with error bands quantifying the 
uncertainties in the estimates.  For alternative but related formulations for combining 
computational models with physical measurements for calibration and prediction, see Fuentes 
and Raftery (2004), Goldstein and Rougier (2004), and Tonkin and Doherty (2009). 
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BOX 5.3  Using a Model Discrepancy Term to Predict Drop Times 

 

After the calibration of the 
model, which accounts only  
for acceleration due to 
(Box 5.2), we find that the 
model does not accu
predict drop times for the 
basketball and baseball
(Figure (a)).  Thus the mode
not considered to be 
adequate for predicting the 
drop time for a softball at 40 
m or 100 m. 

gravity 

rately 

 
l is 

The resulting predictions and uncertainty use a model that more accurately fits known data but does not accurately reproduce 
reality in general.  Furthermore, the discrepancy term is not physically derived. For example, this discrepancy‐adjusted model 
does not produce a constant terminal velocity for an object that falls for a long time.  This suggests that the quality of these 
predictions is less than those produced from the drag model used in Box 5.1.  In particular, predictions for drops from greater 
heights, resulting in greater velocities, are suspect for this discrepancy‐adjusted model.  A key question is at what height (for a 
softball, say) does this prediction (with uncertainty) become unreliable? 
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Figure 5.3.d shows 
predictions using the 
discrepancy‐adjusted 
model described above.  
The added uncertainty is 
due to uncertainty in both 
g and α in this model.   

 

 
(b) 

. 
(a) 

(b) (c) 

 

The conceptual and mathematical model accounts for 
acceleration due to gravity g only.  A discrepancy‐
adjusted prediction is produced by adjusting the 
simulated drop times according to the equation: 
 
Drop time = simulated drop time + α × drop height, 

Golf ball 

Bowling 
ball 

Light 
bowling 

all
where α depends on the radius and density of the ball 
(Rball , ρball ).  The model produces an estimate for α that 
increases as ball density decreases (Figure (c) at right).  

b  Baseball 
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To make these extensions more concrete, consider the reduced version of the ball-drop 
experiments in Box 5.3.  In this illustration, the computational model is the simple model 
outlined in Box 5.1, and the unknown parameter in the model, , is the acceleration due to 
gravity g.  This simple model fails to take into account the ball properties and the effect of air 
friction.  Suppose for the moment that the experiments are performed only with the bowling ball 
(i.e., see Box 1.1 in Chapter 1, or Box 5.2) and the inverse problem is solved as outlined in 
Section 5.3, “Model Calibration and Inverse Problems.”  Notice that the constrained prediction 
of the bowling-ball drop times performs quite well.  However, the first two plots in Box 5.3.a 
show that the model does not accurately predict the drop times for the basketball and baseball.  
This would also indicate that predictions for the untested softball are problematic.   

If all of the observations for the basketball, baseball, and bowling ball are available, then a 
model discrepancy (i.e., model inadequacy) term that accounts for each ball’s radius and density 
can be estimated.  The particular discrepancy is estimated in Box 5.3.c.  A glance at Box 5.3.d 
shows that the discrepancy-adjusted model does a much better job of predicting the physical 
responses.  Also notice that the 95 percent probability interval for each ball is wider than those 
illustrated in Box 5.1.  This is because the statistical model is estimating g as well as parameters 
for the discrepancy model (the parameters that describe the function α(Rball, ρball)). 

Continuing with this illustration, suppose that interest also lies in predicting the drop times 
for the softball, but there are no observations available.  Since the discrepancy is modeled as a 
function of the ball’s radius and density, then discrepancy-adjusted predictions can be made for 
the softball (see Box 5.3.d).  The 95 percent probability intervals are wider than the intervals for 
the other balls because there are no observations of the softball, and the inadequacy for this 
setting is informed through the estimated discrepancy model.   

One might be tempted to use this approach to estimate drop times for the golf ball.  Notice 
that the golf ball is not in the interior of the radius and density ranges explored in the 
experiments.  Such a scenario constitutes an extrapolation of the discrepancy function where one 
is not likely to know its functional form.  In any case, extrapolating beyond the experimental 
region should be done with great caution.  

The additive discrepancy term described in this chapter—which in many published 
applications has been modeled as a Gaussian process—could be replaced by other, more 
physically motivated forms.  It is also common to embed discrepancy terms within the 
computational-model specification.  For example, the air friction term in the ordinary differential 
equation (ODE) in Box 5.1.b could be considered a physically motivated, embedded discrepancy 
term.  Such terms are more commonly called parameterized, or effective, physics terms.  
Generally, the more physically motivated a discrepancy term is, the broader the prediction’s 
domain of applicability.  This broader perspective of constructing general approaches for 
adjusting basic, inadequate models to give useful predictions is likely to be a productive field for 
future VVUQ research. 

The approach of embedding discrepancy terms within the computational-model 
specification is not a panacea, however, and thus it comes with a few notes of caution.  For 
example, the approach can suffer from serious confounding between the estimates of the 
parameters, , and the estimated discrepancy function.  Broadly speaking, the discrepancy can 
account for both good and bad choices of   (Loeppky et al., 2011).  Indeed, in cases where 
model inadequacy exists (i.e., the discrepancy cannot be safely estimated as zero), one should not 
view the estimates of the unknown parameters, , as solutions to the inverse problem, but instead 
should view them more as tuning parameters to allow the sum of the computer model and 
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discrepancy to best match the observations.  Furthermore, the estimated discrepancy does not 
necessarily extrapolate well to new situations (although it can if one is lucky), because the 
“model bias or discrepancy correction” can claim to be accurate only in regions close to where 
there are real-process data.  In spite of these issues, formally exploring the discrepancy surface 
can be of considerable value, exposing the regions of the input space for which the 
computational model is inadequate, potentially leading to opportunities for improvement in the 
model.   

 
Finding:  A discrepancy function can help adjust the computational model to give better 
interpolative predictions.  A discrepancy function can also be beneficial in reducing the 
overtuning of parameters used to adjust of calibrate the model that can otherwise result. 
 

If no data on the real process are available (e.g., as in the Predictive Engineering and 
Computational Sciences (PECOS) case study of Section 5.9, or for parts of the problem of 
determining the condition of the nuclear stockpile), there is no alternative to the “logical” 
approach to assessing model adequacy (although the adequacy of subcomponents of the model 
could be partly assessed through real-process data relevant to the subcomponents).  Care is 
needed in analyzing the uncertainties from each possible source.  It is tempting to do “worst-
case” analyses, but these will often not result in useful policy guidelines because the “worst 
cases” are too extreme, especially if the system has a large number of components and the “worst 
cases” of each are combined. 

For example, suppose we have a 15 component system and the probability of failure of 
each component is known quite accurately to be between 0.002 and 0.007. Then a worst-case 
analysis shows only that the probability of failure of the system (assuming it fails if any 
component fails) is between 0.03 and 0.10, which may be an overly wide interval for decision 
purposes.  In contrast, if one were willing to assume that the failure probabilities of the 
components were (independently) uniformly distributed between 0.002 and 0.007, the resulting 
95 percent confidence interval for system failure would be the interval from 0.060 to 0.070, a 
much smaller interval.  Although one could certainly argue against the assumptions made in the 
latter analysis, from the decision standpoint, it might be preferable to accept such assumptions in 
lieu of the large uncertainties produced by the worst-case analysis.  

Research and educational issues abound in the areas of accounting for model discrepancy.  
Below, a few main issues are summarized. 

 
 The predictive approach to evaluating model adequacy has implementation problems:  it 

leads to identifiability issues because of trade-offs between the model parameters and the 
discrepancy term, and it is difficult to implement in high-dimensional problems. 

 The use of physically motivated forms for the discrepancy term, using insight from the 
application and from an understanding of the model’s shortcomings, is an open problem 
that can be advanced by researchers who are versed in VVUQ methods, computational 
modeling, and the application at hand.   

 One motivation for using multimodel ensembles (Section 5.7) is to estimate physical 
reality using a collection of models, each with its own discrepncy.  Can ensembles of 
models help in estimating model discrepancy?  Can one construct an ensemble of models, 
perhaps using bounding ideas, that allows one to quantify the difference between model 
predictions and reality? 
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 Typically, VVUQ will ultimately be tied into decision making.  If model discrepancy is 
an important contributor to prediction uncertainty, this will need to be reflected in 
decision-making problems that use the model. The VVUQ analysis must produce results 
that can be incorporated into the encompassing decision problem. 

 Assessing model adequacy should be viewed as an evolutionary process with the 
accumulation of evidence enhancing or degrading confidence in the model outputs and 
their use for an intended application.  Therefore, the formal methodology must 
accommodate the updating of current conclusions as more information arrives. 

 
As an alternative to the Bayesian approach, one might formally perform a hypothesis test to 

decide if it can be assumed that the discrepancy is zero in the tested regimes (Hills and Trucano, 
2002).  Two problems can arise with this approach, however.  The first is that the test may suffer 
from a lack of statistical power.  For instance, if one has physical data that are very uncertain and 
provide almost no constraint on reality, then the null hypothesis of zero discrepancy will not be 
statistically rejected, even if the computational model is extremely biased.  At the opposite 
extreme, one might have a quite good computational model with discrepancy that is close 
enough to zero to make the model very useful, and yet have so much physical data that one 
would resoundingly reject the null hypothesis of zero discrepancy with any formal statistical test.  
(For an example of the latter, see Bayarri et al., 2009a.)  Accordingly, the committee believes 
that the approach of estimating the discrepancy, together with associated error bands and 
specified tolerance, is the more fruitful approach. 

 
 

5.5 ASSESSING THE QUALITY OF PREDICTIONS 
 
Predictions with uncertainty are necessary for decision makers to assess risks and take 

actions to mitigate potential adverse events with limited resources.  In addition to providing an 
estimate of the uncertainty, it is also crucial to assess the quality of the prediction (and 
accompanying uncertainty), describing and assessing the appropriateness of key assumptions on 
which the estimates are based, as well as the ability of the modeling process to make such a 
prediction.  The way that one assesses the quality, or reliability, of a prediction and describes its 
uncertainty depends on a variety of factors, including the availability of relevant physical 
measurements, the complexity of the system being modeled, and the ability of the computational 
model to reproduce the important features of the physical system on which the QOI depends. 

This section surveys issues related to assessing the quality of predictions, their prediction 
uncertainty, and their dependence on features of the application—including the physical 
measurements, the computational model, and the degree of extrapolation required to make 
inferences about the QOI. 

For repeatable events, a computational model’s predictive uncertainty can often be reliably 
assessed empirically, without a detailed understanding of how the model works and without a 
detailed understanding how the model differs from reality.  For example, consider two models 
for predicting tomorrow’s high temperature (Figure 5.1)—one model uses today’s high 
temperature as the prediction, and the other is the prediction provided by the National Weather 
Service (NWS) using state-of-the-art computational models and data feeds from ground stations 
and satellites.  By comparing predictions to physical observations over the past year, one can 
infer that although both models are unbiased, the prediction from the NWS model is more 
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accurate.  A 90 percent prediction interval for the NWS predictions is 6°F, whereas the same 
prediction interval for the empirical persistence model is 14°F. 

 
FIGURE 5.1  Daily maximum temperatures for Norman, Oklahoma (left), and histograms of next-day 
prediction errors (right) using two prediction models.  The top histogram shows residuals from the 
persistence model, predicting tomorrow’s high temperature with today’s high temperature.  The bottom 
histogram shows residuals from the National Weather Service (NWS) forecast.  Ninety percent of the 
actual temperatures are within 14oF for the persistence-model forecasts, and within 6oF for the NWS 
forecasts.  The greater accuracy of the NWS forecasts is due to their use of computational models and 
additional meteorological information.  The assessment of these two forecast methods is relatively 
straightforward because of the large number of comparisons of model forecast to measurement.   

prediction error (°F) 

SOURCE: Data from Brooks and Doswell (1996). 
 
This combination of computational model with physical observations is a classic example 

of data assimilation.  This is a mature field, with substantial literature and research focused on 
such filtering, or data-assimilation problems (Evensen, 2009; Welch and Bishop, 1995; Wan and 
Van Der Merwe, 2000; Lorenc, 2003; Naevdal et al., 2005), in which the model is repeatedly 
updated given new physical observations. In these applications the prediction and its uncertainty 
are reliably estimated, the data are relatively plentiful, and data are directly comparable to model 
output. 

In many model-based prediction problems, a purely empirical, or statistical, approach is not 
feasible because there are insufficient measurement data in the domain of interest with which to 
assess the computational model’s prediction accuracy directly.  For example, consider the ball-
drop experiment described in Boxes 5.1 and 5.2.  The prediction as to how long it takes a softball 
to fall 100 m is based on a computational model and experiments involving various balls—none 
of which is a softball—and various drop heights, none of which is above 60 m.  The automobile-
suspension system case study discussed in Section 5.6 is another example, as is the thermal 
problem described in Hills et al. (2008).  In each of these examples there are limited data 
available that can be combined with a computational model to produce predictions and 
accompanying uncertainty estimates.  This means that there is some degree of extrapolation 
involved in these predictions.  Assessing the quality of the prediction and uncertainty estimate in 
these cases requires an understanding of the physical process and the computational model in 
addition to the VVUQ methodology being used. 

The combination of measurement data and computational model(s) can be more intricate, 
as described in the PECOS Center’s application on assessing the thermal protection layer of a 
reentry vehicle (Section 5.9), or in the cruise-missile assessment described in Oberkampf and 
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Trucano (2000), or in the validation work of the Department of Energy (DOE) National Nuclear 
Security Administration (NNSA) laboratories’ stockpile stewardship program (Thornton, 2011).  
In these applications, a hierarchy of different experiments explores different features of the 
physical system.  Some experiments probe a single phenomenon, such as material strength or 
equation of state, whereas others produce measurements from processes that involve multiple 
physical phenomena, requiring multiphysics models.  Typically, experimental measurements are 
more readily available for simpler experiments, involving a single effect.  Highly integrated 
experiments are more expensive and less common.  In such applications, a model to predict the 
QOI typically requires a multiphysics code, and the QOI is often difficult, or even impossible, to 
observe directly in experiments.  One needs to combine measurements from these various 
experiments with the computational model to produce predictions with uncertainty for the QOI.  
Ideally, one should also assess the quality of resulting predictions and of their estimated 
uncertainties. 

The above applications have limited data in the domain of interest, and others are even 
more extrapolative.  The climate-modeling case study discussed in Section 2.10 of Chapter 2 is a 
good example of extrapolation.  The QOI is global mean temperature after 15 years of doubled 
CO2 forcing.  In addition to extrapolations in time and forcing conditions, the predictions are 
based on models that do not contain all of the physical processes present in the actual climate 
system. The many issues in such an investigation are detailed in that case study.  Other 
examples, such as assessing the risk of groundwater contamination from transport over the span 
of hundreds or thousands of years, can also be highly extrapolative.  A danger in such 
applications is that the model may be missing key physical phenomena that are not important to 
the processes controlling the calibration and/or validation phase of the assessment, but are 
important in the system for the extrapolative prediction.  Although it is quite difficult to account 
for potential missing processes and to quantify their effects on predicted QOIs, their existence is 
likely to push the model predictions away from reality in highly extrapolative settings. See 
Kersting et al. (1999) for a notable example in subsurface contaminant transport. 

Although there does not appear to be any common, agreed upon mathematical framework 
to assess the quality of validation and UQ in extrapolative situations, nearly all such applications 
invoke some notion of a domain space, describing key features of the physical and modeling 
processes relevant to the QOI.  A very simple example is given in Box 5-2, where each 
experiment is described by its initial conditions—drop height, ball radius, and ball density.  

This notion of the domain space is also present in the hierarchical validation scenario 
described in Figure 5.7, below in Section 5.9.5, with the space accounting for different basic 
processes in the system, as well as the integration of these different processes.  Figure 5.2 shows 
a number of domain space concepts from the VVUQ literature, ranging from specific 
descriptions of initial conditions to vaguer descriptors of system complexity.  
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FIGURE 5.2   Domain spaces from four different VVUQ sources.  The domain space describes 
the conditions relevant to assessing the accuracy with which a model reproduces an experiment.  
In some cases this domain space is very specific, describing initial conditions; in others this 
space is more generically specified.  SOURCE:  The validation hierarchy is taken from AIAA 
(1998); the validation and application domains are from Oberkampf et al. (2004); the thermal 
challenge example is from Hills et al. (2008). 
 

 This notion of domain space enables one to estimate prediction uncertainty, or quality, as 
a function of position in this space.  In Box 5.3 above, the domain space, describing initial 
conditions, is used as the support on which the model discrepancy term is defined, enabling a 
quantitative description of prediction uncertainty as a function of drop height, ball radius, and 
ball density.  Clearly, this domain space can incorporate more than just model-input terms.  For 
example, Higdon et al. (2008) uses a discrepancy term defined over two-dimensional features 
present in the experimental observations that cannot be incorporated into the one-dimensional 
model that was employed.   

 As Figure 5.2 suggests, it may also be fruitful to define a domain space that describes the 
important physical phenomena/regimes that control or affect the true physical QOI.  Examples 
might include quantitative dimensions such as temperature and pressure visited by the physical 
system, as well as qualitative ones such as whether or not the QOI is affected by a phase change, 
turbulence, or boundary effects.  By constructing such a domain space, more direct diagnoses of 
model shortcomings could be made.  For example, if the system undergoes a phase change, then 
the computed QOI is not reliable since the model does not address this phenomenon.  Such a 
phenomenon-based description of a domain space may be difficult to obtain since such features 
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are often difficult to access experimentally.  Models may help, but they may not faithfully 
reproduce these features of the physical system. 

Mapping out such a domain space can help build understanding regarding the situations for 
which a computational model is expected to give sufficiently accurate predictions.   It also may 
facilitate judgments of the nearness of available physical observations to conditions for which a 
model-based prediction is required.  For example, subject matter and modeling experts might 
agree that the model will still give reliable prediction results as certain dimensions of this space 
are varied, whereas with changes in other dimensions it will not.  Sensitivity analysis is likely 
involved in specifying this domain, but it must go beyond simply exploring the model. 
Understanding the strengths and weakness of both the mathematical and the computational 
models, as they compare to reality for this application, are key.  This understanding must rely 
heavily on subject-matter expertise. 

 
 

5.6 AUTOMOBILE SUSPENSION SYSTEMS CASE STUDY 
 

5.6.1  Background 
 
The use of computer models of processes has enormous potential in industry for replacing 

costly prototype design and experimentation with much less costly computational simulations of 
processes.  In the automotive industry, for instance, each prototype vehicle can cost hundreds of 
thousands of dollars to construct, and the physical testing of the vehicles is expensive.  Great 
savings can be achieved if computer models of the vehicles, or components thereof, are used 
instead of prototype vehicles for design and testing.  Of course, a computer model can be trusted 
for this only if it can be shown to provide a successful representation of the real process. 

This section discusses a study that was made of a computer model of an automotive 
suspension system (Bayarri et al., 2007b).  Of primary interest was the ability of the computer 
model to predict loads resulting from events stressful to the suspension system—for example, 
hitting a pothole.  The case study provides an illustration of much of the range of needed 
inference in uncertainty quantification, covering the following: 

 
 Uncertainty in model inputs, 
 The need for calibration or tuning of model parameters, 
 Assessment of the discrepancy between the model and the real process, 
 Provision of uncertainty bounds for predictions of the model, and 
 The allowing of model prediction improvements through a discrepancy adjustment. 
 
The approach taken in the study was based on Bayesian probability analysis, which has the 

singular feature of allowing all of the above issues to be dealt with simultaneously and which 
also provided final uncertainty bounds on model predictions that account for all of the 
uncertainties in the inputs and model.  In particular, model predictions were always presented 
with 90 percent confidence bands, allowing direct and intuitive assessment of whether the model 
predictions are accurate enough for the intended use.  However, commercial software was used 
in the study, and so verification was not carried out, since it was assumed to be the responsibility 
of the software developer. 
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5.6.2  The Computer Model  
 
An ADAMS3 computer model (a commercially available, widely used finite-element-based 

code that analyzes the dynamic behavior of mechanical assemblies) was implemented (Bayarri et 
al., 2007b) to re-create the loads resulting from stresses on a vehicular suspension system.   

In addition to the finite-element model itself (which must be constructed for each vehicle 
type), the computer model has several inputs: 

 
 Two calibration parameters, u1 and u2, which quantify two types of damping (energy 

dissipation) that need to be estimated for (or tuned to) the physical process under study; 
and 

 Seven unmeasured parameters of the system corresponding to characteristics of parts of 
the suspension system (tires, bushings, and bumpers) as well as vehicle mass; these have 
known nominal values but are subject to manufacturing variations and hence are treated 
as randomly varying around their nominal value. 

 
5.6.3  The Process Being Modeled and Data 

 
 The initially envisaged use of the computer model was to replace (or massively reduce) 

the need for the field-testing of actual vehicles on a test track that included several stressors 
(potholes).  The result of a vehicle test is a time trace of the load on the suspension system as the 
vehicle drives down the test track.  Figure 5.3 presents the computer model prediction of these 
time traces for 65 different combinations of values for the nine input parameters described 
above. These 65 input values sets were chosen, using a Latin hypercube design, so as to “cover” 
the design space of possible input values in a representative fashion.  (For simplicity, only part of 
the time traces are given in Figure 5.3—as the vehicle runs over a single pothole and a span of 
about 3 meters—and only analyses for this region are discussed here.) 

 
3 See http://www.mscsoftware.com/Products/CAE-Tools/Adams.aspx.  Accessed September 1, 2011. 

http://www.mscsoftware.com/Products/CAE-Tools/Adams.aspx


Copyright © National Academy of Sciences. All rights reserved.

Assessing the Reliability of Complex Models:  Mathematical and Statistical Foundations of Verification, Validation, and Uncertainty Quantification

PREPUBLICATION COPY—SUBJECT TO FURTHER EDITORIAL CORRECTION 

 
  

 

5-26 
 



Copyright © National Academy of Sciences. All rights reserved.

Assessing the Reliability of Complex Models:  Mathematical and Statistical Foundations of Verification, Validation, and Uncertainty Quantification

PREPUBLICATION COPY—SUBJECT TO FURTHER EDITORIAL 
CORRECTION 

FIGURE 5.3  Computer model predictions of force on the suspension system at 65 inputs. 
SOURCE: Bayarri et al., 2007a. 
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This was a context in which the predictive approach to model validation could be 

entertained; the validation process would center on field data obtained from actual 
physical runs of a vehicle over the test track.  A test vehicle was outfitted with sensors at 
various locations on the suspension system and was physically driven seven times over 
the test track.  This resulted in seven “real” independent time series of road loads, 
measured subject to random error but not to bias. 

 
5.6.4  Modeling the Uncertainties 

 
To understand the uncertainties in predictions of the computer model, it is first 

necessary to model the uncertainties in model inputs, the real-process data, and the model 
itself.  For the nine model input parameters, these uncertainties were given in the form of 
prior probability distributions, obtained by consultation with the engineers involved with 
the project.  Many of these were simply the known distributions of suspension-system 
parts arising from manufacturing variability.  The measurement errors in the data were 
modeled using a wavelet decomposition process. 

There were two sources of uncertainty concerning the computer model itself. The 
model discrepancy issue discussed in Section 5.3, “Model Calibration and Inverse 
Problems,” was handled by allowing a functional deviation of the computer model from 
reality, and a Gaussian process prior to this discrepancy (following Kennedy and 
O’Hagan, 2001).  The second source of uncertainty in the model was in the use of an 
emulator (an approximation to the computer model) because of the expense of running 
the computer model.  Since a Gaussian process was used to construct the emulator, the 
uncertainty in its approximation can be readily incorporated into the overall assessment 
of uncertainty. 

 
5.6.5  Analysis and Results 

 
The collection of probability distributions representing the uncertain model inputs, 

uncertain real-process data, and uncertain model was processed through Bayesian 
analysis involving MCMC computation (Bayarri et al., 2007b).  The results of the 
analysis are expressed as posterior distributions of QOIs, summarized by a posterior 
expected value (the “prediction” of the quantity) and confidence intervals to indicate the 
uncertainty in the prediction. 

Figure 5.4 presents the estimated model discrepancy—that is, the estimated 
difference between the computer-model prediction and the real process.  The dashed line 
is the mean discrepancy, and the solid lines are 90 percent uncertainty bands for this 
discrepancy.  As can be seen, the computer model provided a reasonable approximation 
to the real process; a constant value of zero for the discrepancy would indicate a perfect 
validation.  
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FIGURE 5.4  Estimated discrepancy of the computer model from reality. SOURCE: 
Bayarri et al., 2007b. 
 

The shown deviation from zero was not deemed by the engineers to be excessive, 
except for the spike (which occurred at the pothole).  An effort was made to incorporate 
the discrepancy assessment into improved predictions of reality from the computer 
model.  Note that this incorporation is not a matter of simply “adding” the discrepancy to 
the model prediction, because the uncertainties in the discrepancy and damping 
parameters are highly dependent so that their joint posterior distribution must be utilized 
to determine the adjustment. 

Various prediction scenarios can be considered.  The most challenging of these was 
the prediction for a new vehicle type having different nominal values of the input 
parameters.  The most valuable engineering use of computer models is, indeed, to 
extrapolate to such a system having new input values, since then the expense of obtaining 
real-process data can be avoided.  Such extrapolation requires strong assumptions 
concerning the discrepancy.  The simplest assumption is that the new system has the 
same discrepancy function (or distribution) as the old system, and that was assumed here.  
Because of physical understanding of the system, the discrepancy was viewed as being 
multiplicative rather than additive. 

To predict the road-load time trace for the new vehicle type, the computer model (in 
which the new vehicle type was close enough in design to allow the use of the same 
finite-element representation as for the previous vehicle type) was run at 65 values of the 
uncertain inputs.  These were now centered around nominal input values assessed for the 
new vehicle.  A Bayesian analysis was subsequently performed, utilizing these 65 
computer-model runs, the prior distributions for the seven suspension characteristics, and 
the joint posterior distribution of the discrepancy and damping parameters obtained from 
the original vehicle. 

Figure 5.5 summarizes the results of this analysis.  Clearly there is a significant 
difference between the predictions of the computer model alone and the predictions that 
incorporated the discrepancy of the model that was determined by using previous 
experimental data.  Eventually, the new vehicle was driven over the test track, with the 
actual road-load traces being measured—the heavy black band in Figure 5.5.  While not 
perfect, the Bayesian predictions are considerably more accurate than predictions from 
the computer model alone. 
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FIGURE 5.5  Results of Analysis.  The gray curves show the 65 computer-model runs.  
The Bayesian posterior mean of the road-load trace is the dashed line, and 90 percent 
uncertainty bands are the solid blue lines and heavy black line is the field data.  
SOURCE: Bayarri et al., 2007b. 
 

This example shows a successful use of discrepancy-adjusted prediction; such 
adjustment will not always be acceptable, however, because extrapolation beyond the 
range of relevant data is always a challenge, depending as it does on assumptions about 
continuity in the underlying model validity and about conditions under which 
extrapolating estimates of parameter values can be assumed to be smooth.  However, 
since the computer model itself is used to do the computational “heavy lifting” in the 
extrapolation, with the discrepancy adjustment playing a lesser role, concerns about 
extrapolation can be somewhat mitigated. 

More important, the Bayesian approach implicitly incorporates all uncertainties in 
the analysis and folds these into assessment of the overall uncertainty in the posterior 
distributions of all QOI.  The main limitation of the approach is the need for MCMC 
computation, which could sometimes require either extensive computational effort or the 
development of a good emulator for the more computationally challenging components 
of the computer model. 

 
 

5.7 INFERENCE FROM MULTIPLE COMPUTER MODELS 23 
 
In applications such as climate change, uncertainties in 20- or 100-year forecasts are 

likely dominated by structural uncertainty—uncertainty due to the discrepancy between 
model and reality.  Since there are few or no physical observations from which to 
estimate model discrepancy directly, predictions from a number of different climate 
models are often used to help quantify prediction uncertainty.   

Some forecasting applications have made successful use of combining predictions 
from different models (e.g., Gneiting and Raftery, 2005).  These approaches incorporate 
multiple model-based predictions within a statistical modeling framework, often 
producing predictions more accurate those of than any single model, with more-reliable 
estimated uncertainties.  Although climate and weather are the main examples discussed 
in this section, these basic approaches have been applied in a wider variety of 
applications. 
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The Intergovernmental Panel on Climate Change (IPCC) uses predictions of the 
future climate state from multiple computational global climate models, developed under 
various research efforts from around the world, to make assessments about climate 
change under different future emission scenarios (Meehl et al., 2007).  The resulting 
multi-model ensemble (MME) of climate model runs, carried out largely for the IPCC 
assessment, has been used by a variety of researchers to produce predictions of future 
climate along with estimates of prediction uncertainty.  The most common approach for 
using such an MME to make predictions about future climate is the use of a hierarchical 
modeling framework, effectively treating the output from different models as noisy 
versions of the actual climate system (Tebaldi et al., 2005; Buser et al., 2009; Smith et al., 
2010).  Researchers readily admit that such hierarchical modeling approaches are far 
from ideal—the ensemble of models is a sample of convenience, and dependencies 
between different computational models are typically not accounted for in the statistical 
modeling.  Interestingly, the estimated prediction uncertainty typically decreases as the 
ensemble size increases.  It is not at all clear that this should be the case.  One can argue 
that even if infinitely many models could be sampled, future climate would still not be 
perfectly understood because of our limited knowledge of climate physics.  However, the 
hierarchical modeling approach is a first step for developing more realistic prediction 
uncertainties using MMEs.  Research is needed to establish the connection between 
model-to-model differences and model-to-reality differences. 
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In forecasting applications, where repeated relevant physical observations are 
abundant, the combination of multiple computational models has led to improved 
predictions and improved prediction uncertainties.  The probcast (web page: 
http://probcast.washington.edu/) methodology of Gneiting and Raftery (2005) is a notable 
example. 

This approach, like many others, uses Bayesian model averaging (Hoeting et al., 
1999), which models the physical observations as coming from one of the models in the 
ensemble—but which model is chosen is uncertain.  The resulting analysis produces a 
posterior distribution for the forecast that is a weighted average of the individual model 
predictions (with uncertainty).  The resulting predictions from the Bayesian model 
averaging approach are generally more accurate than any single prediction, and the 
resulting prediction uncertainty better describes the variation of the prediction about the 
observed value than does the raw ensemble. 

So far, the success of such model-averaging approaches in forecasting has not been 
translated to more extrapolative, data-poor settings such as climate change where 
predictions and their uncertainty cannot be calibrated with an abundant supply of relevant 
physical observations.  The hierarchical model-based approaches for assessing prediction 
uncertainty using multi-model ensembles can deal with the relative paucity of physical 
observations, and can capture key sources of uncertainty that may be missed using more 
traditional parametric variations within a single computational model, but are justified 
only under assumptions that are often not met in practice.  Additional research will likely 
improve the state of the art in combining predictions from multi-model ensembles.  Such 
research includes improved methods for constructing ensembles of models, analysis of 
interdependence among models, assessment of confidence in particular models and their 
predictive power, and use of information-theoretic and statistical means for developing 
robust and reliable methods for model comparison, selection, and averaging/pooling.   
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5.8 EXPLOITING MULTIPLE SOURCES OF PHYSICAL OBSERVATIONS 3 
 

In many applications, multiple sources of physical observations may be available 
for the validation/prediction assessment.  In engineering applications, the data sources 
might conform to a validation hierarchy (see Figure 5.7 in Section 5.9.5), whereas in 
other applications these different data sources might include different sensing modalities 
(e.g., infra-red, visible, seismic) or different data sources (e.g., pressure measurements or 
well cores).  It may also be appropriate to use output from high-quality simulations as 
surrogates for physical observations (e.g., direct numerical simulation of turbulent flow 
using resolved Navier-Stokes equations may inform about predictions using coarser, 
Reynolds-averaged Navier-Stokes simulations).  There is the opportunity to make use of 
these various sources of physical observations to address key issues such as model 
calibration, model discrepancy, prediction uncertainty, and assessing the quality of the 
prediction.  There is also opportunity to use what is learned from such analyses to inform 
how to select additional observations or to design additional experiments. 

For a given collection of physical observations, there is the question of how best to 
use these sources for validation and prediction.  For example, should low-level 
experiments in a validation hierarchy be used for calibration, saving the more integrated 
experiments for assessing the model?  Or should both calibration and assessment be done 
together?  Different strategies will require different approaches, which may affect the 
quality of the predictions.  

Multiple sources of physical observations provide an opportunity to assess a 
prediction and the accompanying prediction uncertainty.  One way to exploit this 
opportunity is to identify collections of experiments, or observation sources, that can be 
used to assess the quality of a “surrogate” prediction that has important commonalities 
with the QOI prediction.  The characteristics that define an appropriate surrogate, if they 
exist, will depend on features of the domain space.  Does a candidate surrogate prediction 
depend on the physical process in a way similar to the QOI prediction?  Does the 
surrogate have similar sensitivities to model inputs?  Does the model discrepancy 
function (if there is one) adequately capture uncertainty for these predictions?  Should the 
same model discrepancy function transfer to the QOI?  Exactly how best to use multiple 
sources of physical data to improve the quality and accuracy of predictions is an active 
VVUQ research area. 

In cases where the validation effort will call for additional experiments, the 
methodologies of validation and prediction can be used to help assess the value of 
additional experiments and might also suggest new types of experiments to address 
weaknesses in the assessment.  Ideas from the design of experiments from statistics (Wu 
and Hamada, 2009) are relevant here, but the design of validation experiments involves 
additional complications that make this an open research topic.  The computational 
demands of the computational model are a complicating factor, as is the issue of dealing 
with model discrepancies.  Also, some of the key requirements for additional 
experiments—such as improving  the reliability of the assessment or improving 
communication to stakeholders or decision makers—are not easily quantified.  The 
experimental planning enterprise is considered from a broader perspective in Chapter 6. 
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5.9 PECOS CASE STUDY 3 
 

5.9.1  Overview 
 
The Center for Predictive Engineering and Computational Sciences, called the 

PECOS Center, at the University of Texas at Austin is part of the Predictive Science 
Academic Alliance Program (PSAAP) of the Department of Energy’s National Nuclear 
Security Administration.  The PECOS Center is engaged in developing VVUQ processes 
to gain an understanding of the reentry of a space capsule (e.g., NASA's proposed Orion 
vehicle) into Earth's atmosphere.  Of primary interest is the performance of the thermal 
protection system (TPS), which protects the vehicle from the extreme thermal 
environment arising from travel through the atmosphere atspeeds of  Mach 20 or higher, 
depending on the trajectory.  Vehicles that use ablative heat shields (e.g., Orion and 
Apollo) are being simulated to predict the rate at which the ablator is being consumed.  

TPS consumption is a critical issue in the design and operation of a reentry 
vehicle—if the entire heat shield is consumed, the vehicle will burn up.  TPS 
consumption is governed by a range of physical phenomena, including high speed and 
turbulent fluid flow, high-temperature aero-thermo-chemistry, radiative heating, and the 
response of complex materials (the ablator).  Thus, a numerical simulation of reentry 
vehicles requires models of these phenomena. 

The reentry vehicle simulations share a number of complicating characteristics with 
many other high-consequence computational science applications. These complicating 
characteristics include the following: 

  
 The QOIs are not accessible for direct measurement under the conditions in which 

the predictions are to be made; 
 The predictions involve multiple interacting physical models; 
 Experimental data available for calibrating and validating models are difficult to 

obtain, include significant uncertainty, are sparse, and often describe physical 
conditions not directly related to the predictions; and 

 The best available models for some of the physical phenomena are known to 
include sizable errors.  

 
These characteristics greatly complicate the assessment of prediction reliability and 

the application of VVUQ techniques. 
 

5.9.2  Verification 
 
As described above, there are two components of the verification of computer 

simulation: (1) ensuring that the computer code used in the simulation correctly 
implements the intended numerical discretization of the model (code verification), and 
(2) ensuring that the errors introduced by the numerical discretization are sufficiently 
small (solution verification). 
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5.9.3  Code Verification 1 
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There are many aspects of ensuring the correct implementation of a mathematical 

model in a computer code.  Many of these are just good software engineering practices, 
such as exhaustive model development and user documentation, modern software design, 
configuration control, and continuous unit and regression testing.  Commonly understood 
to be important but less commonly practiced, these processes are an integral part of the 
PECOS software environment. 

To ensure that an implementation is actually producing correct solutions, one wants 
to compare results to known, preferably analytic, solutions.  Unfortunately, analytic 
solutions are not generally available, which is the reason for the use of the method of 
manufactured solutions (MMS), in which source terms are added to the equations to 
make a pre-specified “solution” exact (Steinberg and Roache, 1985; Roache, 1998; 
Knupp and Salari, 2003; Long et al., 2010; and Oberkampf and Roy, 2010).  Although 
MMS is a widely recognized approach, it is not commonly used.  One reason is that it is 
much more difficult to implement for complex problems than it appears.  First, even for 
systems of moderate complexity (e.g., three-dimensional compressible Navier-Stokes) 
there can be many hundreds of source terms, and it is clearly necessary that the 
evaluation of these terms be done with high reliability.  Thus, constructing analytic 
solutions is itself a software engineering and reliability challenge.  Second, the 
introduction of the source terms into the code being tested must be done with minimal 
(preferably no) changes to the code, so that the tests are relevant to the code as it will be 
used.  Unfortunately, this introduction of the source terms may not be possible in codes 
that have not been designed for it.  Finally, it is necessary that manufactured solutions 
have characteristics similar to those of the problems that the codes will be used to solve.  
This is important so that bugs are not masked by the fact that the terms in which they 
occur may be insignificant in a manufactured solution that is too simple.  

At the PECOS Center, to make MMS useful for the verification of reentry vehicle 
codes, a highly reliable software library for implementing manufactured solutions (the 
Manufactured Analytic Solution Abstraction, or MASA) and a library of manufactured 
solutions, using symbolic manipulation software (e.g., Maple), have been developed.  
These manufactured solutions have been imported into MASA.  MASA and associated 
solutions have been publicly released.4  Further, part of the PECOS Center software 
development process involves developing and documenting a verification plan (usually 
involving MMS) before development begins, so that codes are designed to enable MMS.  
These efforts have paid off by exposing a number of subtle but important bugs in PECOS 
software.  An example is shown in Figure 5.6, in which the convergence with grid 
refinement of the Spalart-Allmaras (SA5) turbulence model equations to a manufactured 
solution is shown.  In the initial test, the solution error did not converge to zero with 
uniform grid refinement, which led to the discovery of a bug in the implementation of the 
SA equations.  When this was bugfixed, the error did reduce with refinement, but not at 
the theoretically expected rate of h2.  The slower rate was caused by a long-standing bug 

 
4 See https://red.ices.utexas.edu/projects/software/wiki/MASA.  Accessed March 19, 2012. 
5 For a definition and details of this model see http://turbmodels.larc.nasa.gov/spalart.html.  Accessed 
March 24, 2012. 
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in the implementation of Streamline-Upwind/Petrov-Galerkin (SUPG) stabilization in the 
LibMesh finite-element infrastructure in which the model was implemented.  
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FIGURE 5.6  Dependence of the L2 error in the Spalart-Allmaras (SA) turbulence model 
manufactured solution on the grid size, under uniform refinement.  Shown are the 
original test, the test after the correction of a bug in the SA equations, and that after 
subsequent correction of a bug in Streamline-Upwind/Petrov Galerkin regularization.  
The theoretical convergence is second order. 

 
5.9.4  Solution Verification 

 
The question in solution verification is whether a numerical solution to a set of 

model equations is “close enough” to the exact solution.  A “close enough” standard is 
necessary because, although discretization errors can generally be made arbitrarily small 
through refinement of the discretization, it is neither practical nor necessary to drive these 
errors to the level of round-off error.  Generally, the models are used to predict certain 
output QOIs, and one wants to ensure that these quantities are within some tolerance of 
those from the exact solution of the models.  

An acceptable numerical error tolerance depends on the circumstances.  At the 
PECOS Center, since the numerical discretization errors are under the control of the 
analyst, the view is taken that they should be made sufficiently small to be negligible 
compared to other sources of uncertainty.  This avoids the need to model the uncertainty 
arising from such errors.  It is important to identify the QOIs for which predictions are 
being made because the numerical discretization requirements for predicting some 
quantities (e.g., high-order derivatives) are much more stringent than for other quantities. 

Solution verification, then, requires that the discretization error in the QOIs be 
estimated.  The common practice of comparing solutions on two grids to check how 
much they differ is not sufficient.  In simple situations it is possible to refine the 
discretization uniformly (e.g., half the grid spacing everywhere), and then to apply 
Richardson extrapolation. to develop an error estimate.  A more general technique, and 
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the one used at the PECOS Center, is adjoint-based a posteriori error estimation 
(Bangerth and Rannacher, 2003).  Once one has an estimate of the errors in the QOIs, it 
may be necessary to refine the discretization to reduce this error.  Adjoint-based error 
estimators also provide an indicator of where (in space and/or time) the discretization 
errors are contributing most to errors in the QOIs.  Goal-oriented adaptivity (Bangerth 
and Rannacher, 2003; Oden and Prudhomme, 1998; Prudhomme and Oden, 1999; 
Strouboules et al., 2000) uses this adjoint information to drive adaptive refinement of the 
discretization. 
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At the PECOS Center, the simulation codes used to make predictions of the ablator 
consumption rate (the QOI) have been developed to perform adjoint-based error 
estimation and goal-oriented refinement.  For example a hypersonic flow code (FIN-S) 
supporting goal-oriented refinement was built on the LibMesh infrastructure (Kirk et al., 
2006).  Adaptivity is used to reduced the estimated error in the QOIs to below specified 
tolerances, thereby accomplishing solution verification. 

 
5.9.5  Validation 

 
Data and associated models of data uncertainty are critical to predictive simulation.  

They are needed for the calibration of physical models and inadequacy models and for 
the validation of these models.  At the PECOS Center, the calibration, validation, and 
prediction processes are closely related, interdependent, and at the heart of uncertainty 
quantification in computational modeling. 

A number of complications arise from the need to pursue validation in the context 
of a QOI.  First, note that in most situations the QOI in the prediction scenario is not 
accessible for observation, since otherwise, a prediction would generally not be needed.  
This inability to observe the QOI can arise for many reasons, such as legal or ethical 
restrictions, lack of instrumentation, limitations of laboratory facilities to reproduce the 
prediction scenario, cost, or that the prediction is about the future.  At the PECOS Center, 
the QOI is the consumption rate of an ablative heat shield at peak heating for a particular 
trajectory of a reentry vehicle.  It is experimentally unobservable because the conditions 
are not accessible in the laboratory and because flight tests are expensive, making it 
impractical to test every trajectory of interest. 

Validation tests are of course posed by comparing to observations the outputs of the 
model for some observable quantity.  The central challenge is to determine what the 
mismatch between observations and the model, and the relevant prediction uncertainties, 
imply about predictions of unobserved QOIs.  Because the QOIs cannot be observed, the 
only access that one has to them is through the model, and so this assessment can be done 
onlyin the context of the model. 

Another complication arises when the system being modeled is complicated with 
many parts or encompasses many interacting physical phenomena.  In this case, the 
validation process is commonly hierarchical, with validation tests of models for 
subcomponents or individual physical phenomena based on relatively simple 
(inexpensive) experiments.  As an example, in the reentry vehicle problem being pursued 
at the PECOS Center, the individual physical phenomena include aero-chemistry, 
turbulence, thermal radiation, surface chemistry, and ablator material response. 
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Combinations of subcomponents or physical phenomena are then tested against 
more complicated, less-abundant multiphysics experiments.  Finally in the best 
circumstances, one has some experimental observations available for the complete 
system, allowing a validation test for the complete model. The hierarchical validation 
process can be envisioned as a validation pyramid shown in Figure 5.7. 
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FIGURE 5.7  The prediction pyramid depicting the increasing complexity of the physical 
scenarios (Sc, Sv, and Sp) accompanied by the decreasing availability of data (Dc and Dv)
for calibration and validation of complex multiphysics models, with the prediction 
quantity of interest (Qp) residing at the highest level of the pyramid. 

 
The hierarchical nature of multiphysics validation poses further challenges.  First, 

the QOIs are generally accessible only through the model of the full system, so that 
single-physics models do not have access to the QOI, making QOI-aware validation 
difficult.  Generally surrogate QOIs are devised for single-physics models—a surrogate 
QOI being as closely related to the full system QOI as possible.  For example, in the 
validation of boundary-layer turbulence models for the reentry vehicle simulations 
pursued at the PECOS Center, the turbulent wall heat flux is identified as a surrogate 
QOI, since it is directly related to, and is a driver for, the ablation rate.  Multiphysics 
validation tests performed at higher levels of the pyramid are important because they 
generally test the models for the coupling between the single-physics models.  But the 
fact that data are generally scarce at these higher levels means that these coupling models 
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are commonly not as rigorously tested as the simpler models are, affecting the overall 
quality of the final prediction. 
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5.10  RARE, HIGH-CONSEQUENCE EVENTS 5 
 
Large-scale computational models play a role in the assessment and mitigation of 

rare, high-consequence events.  By definition, such events occur very infrequently, which 
means that there is little measured data from them.  Thus, the issues that complicate 
extrapolative predictions are almost always present in predictions involving rare events.  
Still, computational models play a key role in safety assessments for nuclear reactors by 
the Nuclear Regulatory Commission (Mosleh et al., 1998) and in assessing safety risks in 
subsurface contaminant transport at Department of Energy facilities (Neuman and 
Wierenga, 2003).  Computational models also play a role in characterizing the causes and 
consequences of potential natural disasters such as earthquakes, tsumanis, severe storms, 
avalanches, fires, or even meteor impacts.  The behavior of engineered systems (e.g., 
bridges, buildings) under extreme conditions, or simply as a result of aging and normal 
wear and tear, can also fall under this heading of rare, high-consequence events. 

In many cases, such as probabilistic risk assessment (Kumamoto and Henley, 1996) 
applied to nuclear reactor safety, computational models are used to evaluate the 
consequences of identified scenarios, helping to quantify the risk—the product of the 
chance of an event and its consequences.  This is also true of assessments of the risks 
from large meteor impacts, for which computer models simulate the consequences of 
impacts under different conditions (Furnish et al., 1995).  Although it is difficult to assess 
confidence in such extrapolative predictions, their results can be integrated into a larger 
risk analysis to prioritize threats.  In such analyses, it may be a more efficient use of 
resources to further scrutinize the model results only for the threats with highest priority. 

Computational models can also be used to seek out combinations of initial 
conditions, forcings, and even parameter settings that give rise to extreme, or high-
consequence, events.  Assessing the chances of such events comes after their discovery.  
Many of the methods described in Chapters 3 and 4 are relevant to this task, but now with 
a focus on finding aberrant behavior rather than inferring settings that match 
measurements.  This may involve exploring how a physical system can be “stretched” to 
produce (as yet) unseen, extreme behavior, perhaps induced by interactions among 
different processes.  This is the opposite of designing, or engineering, a system to ensure 
that interactions among the various processes are minimized.  Calculating such extreme 
behavior may tax a model to the point that its ability to reproduce reality is questionable.  
Methods for assessing and improving confidence in such model predictions are 
challenging and largely open problems, as they are for extrapolative predictions. 

Once a high-consequence event is identified, computational models can be viable 
tools for assessing its probability.  Such events are rare, and so standard approaches such 
as Monte Carlo simulation are infeasible because large numbers of model runs would be 
required to estimate these small probabilities.  There are rich lines of current research in 
this area.  Oakley and O’Hagan (2004) use a combination of emulation and importance 
sampling for assessing small probabilities in infrastructure management.  Picard (2005) 
biases a particle-based code to produce more extreme events, statistically adjusting for 
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this bias in producing estimates.  In addition to response-surface approaches, one might 
also use a combination of high- and low-fidelity models to seek out and estimate rare-
event probabilities.  Another possible multi-fidelity strategy would be to use a low-
fidelity model to seed promising boundary conditions to a high-fidelity, localized model 
(Sain et al., 2011).  Embedding computational models in standard statistical approaches is 
another promising direction.  For example, Cooley (2009) combines computer model 
output and extreme value theory from statistics to estimate the frequency of extreme 
rainfall events.  Bayarri et al. (2009b) utilize a computer model to identify the 
catastrophic region in input space for extreme pyroclastic volcanic flows, and statistical 
modeling of the input distributions to compute the probability of the extreme events. 
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A better understanding of complex dynamical systems could help in the search for 
precursors to extreme events or important changes in system dynamics (Scheffer et al., 
2009). Computational models will likely have a role in such searches—even when the 
models are known to have shortcomings in their representation of such complex systems.  
Currently, computational models are being used to help inform monitoring efforts, 
helping to provide early warnings of events ranging from groundwater contamination to a 
terrorist attack. 

Finally, bounding and “worst-case” approaches, if not too conservative, can provide 
actionable information about rare, high-consequence events.  Recent work by Lucas et al. 
(2009) uses concentration-of-measure inequalities to bound the probability of extreme 
outcomes, without having to specify fully the distribution of the input uncertainties.  
Also, more traditional decision-theoretic approaches (e.g., minimax decision rules, 
[Berger 1985]; worst-case priors [Evans and Stark, 2002] may be useful for dealing with 
rare, high-consequence events.  One could imagine embedding these ideas into a 
computational model, using a worst-case value for a reaction coefficient, a permeability 
field, a boundary condition, or even how a physical process is represented in the 
computational model. 

 
 

5.11  CONCLUSION 30 
 

 This chapter discusses numerous tasks that contribute to validation and prediction 
from the perspective of mathematical foundations, pointing out areas of potential fruitful 
research.  As noted, details of these tasks depend substantially on the features of the 
application—the maturity, quality, and speed of the computational model; the available 
physical observations; and their relation to the QOI.  The concept of embedding the 
computational model within a mathematical/statistical framework that can account for 
and model relevant uncertainties, including those caused by initial and boundary 
conditions, input parameters, and model discrepancy is also described.   

Some applications involve making predictions and uncertainty estimates in settings 
for which physical observations are plentiful.  In even mildly extrapolative settings, 
obtaining these estimates and assessing their reliability remains an open problem. The 
NRC (2007) report on the use of models in environmental regulatory decision making 
states, “When model results are to be extrapolated outside of conditions for which they 
have been evaluated, it is important that they have the strongest possible theoretical basis, 
explicitly representing the processes that will most affect outcomes in the new conditions 
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to be modeled, and embodying the best possible parameter estimates” (p. 129).  The 
findings and recommendation below relate to making extrapolative predictions. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 

 
Finding:  Mathematical considerations alone cannot address the appropriateness of a 
model prediction in a new, untested setting.  Quantifying uncertainties and assessing their 
reliability for a prediction require both statistical and subject-matter reasoning. 

 
Finding:  The idea of a domain of applicability is helpful for communicating the 
conditions for which predictions (with uncertainty) can be trusted.  However, the 
mathematical foundations have not been established for defining such a domain or its 
boundaries. 

 
Finding:  Research and development on methods for assessing uncertainties of model-
based predictions in new, untested conditions (i.e., “extrapolations”) will likely require 
expertise from mathematics, statistics, computational modeling, and the science and 
engineering areas relevant to a given application.  Specific needs in assessing 
uncertainties in prediction include:   

 
 Approaches for specifying and estimating model discrepancy terms that leverage 

physical understanding, features of the application, and known strengths and 
deficiencies of the computational model for the application; 

 Computational models developed with VVUQ in mind, which might include the 
need for availability of derivative information; a faster, lower-fidelity 
representation of the model (perhaps with specified discrepancy); or embedding 
physically motivated discrepancy terms within the model that can produce more 
reliable prediction uncertainties for the QOI, and that can be calibrated with 
available physical observations; 

 A framework for efficiently exploiting a hierarchy of available experiments—
allocating experiments for calibration, assessing prediction accuracy, assessing 
the reliability of predictions, and suggesting new experiments within the hierarchy 
that would improve the quality of estimated prediction uncertainties; 

 Guidelines for reporting predictions and accompanying prediction uncertainties, 
including disclosure of which sources of uncertainty are accounted for, which 
aren’t, what assumptions these estimates rely on, and the reliability or quality of 
these assumptions; and 

 Compelling examples of VVUQ done well in problems with different degrees of 
complexity. 

 
A similar conclusion was reached by the National Science Foundation (NSF) 

Division of Mathematics and Physical Sciences (MPS), which, in its May 2010 Advisory 
Committee report recommended as follows: 

 
“MPS should encourage interdisciplinary interaction between domain scientists and mathematicians 
on the topic of uncertainty quantification, verification and validation, risk assessment, and decision 
making.” (NSF, 2010) 
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The above ideas are particularly relevant to the modeling of complex systems where 
even a slight deviation from physically tested conditions may change features of the 
system in many ways, some of which are incorporated in the model and some of which 
are not. 
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The field of VVUQ is still developing, making it too soon to offer any specific 
recommendations regarding particular methods and approaches.  However, a number of 
principles and accompanying best practices are listed below regarding validation and 
prediction from the perspective of mathematical foundations. 

 
• Principle:  A validation assessment is well defined only in terms of specified 

quantities of interest (QOIs) and the accuracy needed for the intended use of the 
model. 

– Best practice:  Early in the validation process, specify the QOIs that will 
be addressed and the required accuracy. 

– Best practice: Tailor the level of effort in assessment and estimation of 
prediction uncertainties to the needs of the application. 

• Principle:  A validation assessment provides direct information about model 
accuracy only in the domain of applicability that is “covered” by the physical 
observations employed in the assessment. 

– Best practice:  When quantifying or bounding model error for a QOI in the 
problem at hand, systematically assess the relevance of supporting data 
and validation assessments (which were based on data from different 
problems, often with different QOIs).  Subject-matter expertise should 
inform this assessment of relevance (as discussed above and in Chapter 7). 

– Best practice:  If possible, use a broad range of physical observation 
sources so that the accuracy of a model can be checked under different 
conditions and at multiple levels of integration. 

– Best practice:  Use “holdout tests” to test validation and prediction 
methodologies.  In such a test some validation data is withheld from the 
validation process, the prediction machinery is employed to “predict” the 
withheld QOIs, with quantified uncertainties, and finally the predictions 
are compared to the withheld data. 

– Best practice:  If the desired QOI was not observed for the physical 
systems used in the validation process, compare sensitivities of the 
available physical observations with those of the QOI. 

– Best practice:  Consider multiple metrics for comparing model outputs 
against physical observations.   

• Principle:  The efficiency and effectiveness of validation and prediction 
assessments are often improved by exploiting the hierarchical composition of 
computational and mathematical models, with assessments beginning on the 
lowest-level building blocks and proceeding to successively more complex levels. 

– Best practice:  Identify hierarchies in computational and mathematical 
models, seek measured data that facilitates hierarchical validation 
assessments, and exploit the hierarchical composition to the extent 
possible. 
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– Best practice: If possible, use physical observations, especially at more 
basic levels of the hierarchy, to constrain uncertainties in model inputs and 
parameters. 

• Principle: Validation and prediction often involve specifying or calibrating model 4 
parameters. 

– Best practice: Be explicit about what data/information sources are used to 
fix or constrain model parameters. 

– Best practice: If possible, use a broad range of observations over carefully 
chosen conditions to produce more reliable parameter estimates and 
uncertainties, with less “trade-off” between different model parameters. 

• Principle:  The uncertainty in the prediction of a physical QOI must be aggregated 
from uncertainties and errors introduced by many sources, including discrepancies 
in the mathematical model, numerical and code errors in the computational 
model, and uncertainties in model inputs and parameters. 

– Best practice:  Document assumptions that go into the assessment of 
uncertainty in the predicted QOI, and also document any omitted factors.  
Record the justification for each assumption and omission. 

– Best practice:  Assess the sensitivity of the predicted QOI and its 
associated uncertainties to each source of uncertainty as well as to key 
assumptions and omissions.    

– Best practice:  Document key judgments—including those regarding the 
relevance of validation studies to the problem at hand—and assess the 
sensitivity of the predicted QOI and its associated uncertainties to 
reasonable variations in these judgments. 

– Best practice: The methodology used to estimate uncertainty in the 
prediction of a physical QOI should also be equipped to identify paths for 
reducing uncertainty. 

• Principle:  Validation assessments must take into account the uncertainties and 
errors in physical observations (measured data).   

– Best practice:  Identify all important sources of uncertainty/error in 
validation data—including instrument calibration, uncontrolled variation 
in initial conditions, variability in measurement setup, and so on—and 
quantify the impact of each. 

– Best practice:  If possible, use replications to help estimate variability and 
measurement uncertainty. 

– Remark:  Assessing measurement uncertainties can be difficult when the 
“measured” quantity is actually the product of an auxiliary inverse 
problem—that is, when it is not measured directly but is inferred from 
other measured quantities. 

 
Finally, it is worth pointing out that there is a fairly extensive literature in statistics 

focused on model assessment that may be helpful if adapted to the model validation 
process.  Basic principles such as model diagnostics (Gelman et al., 1996; Cook and 
Weisberg, 1999), visualization and graphical methods (Cleveland 1984; Anselin, 1999), 
hypothesis testing and model selection (Raftery 1996; Bayarri and Berger, 2000; Robins 
et al., 2000; Lehmann and Romano, 2005), cross-validation and the use of hold-out tests 
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6 Making Decisions 
 
6.1   OVERVIEW 
 

The ultimate goal of verification, validation, and uncertainty quantification (VVUQ) 
activities is to assist decision makers in reaching informed decisions about an intended 
application.  As such, VVUQ activities are part of a larger group of decision-support tools that 
include modeling, simulation, and experimentation.  The role of VVUQ could be as simple as 
providing uncertainty bounds or worst-case analysis for a particular risk metric, or it could be as 
complex as using more rigorous methods (such as the design of validation experiments, or other 
applications requiring optimization under uncertainty) to compare various options. 

This chapter discusses decisions that have to be made during VVUQ activities and presents 
two examples describing how VVUQ activities enhance the eventual decision about the intended 
application.  The incorporation of models and simulations within a complete decision-making 
system is a deep and complex question.  The report Models in Environmental Regulatory 
Decision Making (NRC, 2007) provides a good discussion of this broader topic, which is beyond 
the scope of the current report.  The types of decision discussed here can be grouped into two 
broad categories: (1) decisions that arise as part of the planning and conduct of the VVUQ 
activities themselves and (2) decisions made with the use of VVUQ results about an application 
at hand.  Sections 6.4 and 6.5 present detailed examples of VVUQ applications. 
 
 
6.2  DECISIONS WITHIN VVUQ ACTIVITIES 
 

The nature of VVUQ activities depends fundamentally on how the results will be used in 
the eventual decision concerning an application.  For example, an effort to obtain conservative 
bounds for a risk metric will be quite different from a study to obtain a comprehensive 
uncertainty quantification (UQ) analysis that informs a strategy for reducing uncertainty over 
time.  

 
Finding:  It is important that, before VVUQ activities begin, decision makers and practitioners 
of VVUQ discuss and arrive at an agreement on how the results of VVUQ analyses will be used. 
 

As discussed throughout this report, VVUQ involves a large number of activities, each 
requiring many decisions.  For example, verification studies deal with the implementation of 
numerical algorithms, encompassing the choice and allocation of resources to different types of 
algorithm testing (analytical solutions for simplified physics, method of manufactured solutions, 
and so on), among other issues.  Similarly, software quality assurance involves decisions about 
the different types and the extent of software testing, coverage analysis, and so on.  Validation 
studies also involve many activities, ranging from the choice of input space, to the design and 
fielding of experiments, to the selection of emulators, the analysis of output data, and so on.  
Again, there are many important choices to be made within each of these activities and many 
important decisions to be made on how to trade off resources and time among them.  

The results of a UQ study can help to inform the decision maker on the relative priorities 
among a broad set of choices.  These choices can be viewed as a large set of possible trade-offs 
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through which the uncertainty is managed (an uncertainty management trade space).  
Components of this trade space include the following: 

 
 Fundamental improvements to physics models, 
 Improvements to the integrated simulation and modeling capability, 
 The design and conduct of computer experiments, 
 The design and conduct of relevant constraining physical experiments, and    
 The engineering and design of the system to tolerate the predicted uncertainty. 

 
The first four of these activities are typically (although not exclusively) considered as 

decisions within VVUQ.  The final activity is typically considered to occur after the completion 
of the VVUQ study (treated in more detail in Section 6.3).  All of these activities require 
resources, which include employing domain experts, accessing computational and experimental 
facilities, and influencing engineering design decisions.  Decision makers must allocate 
resources throughout the VVUQ process keeping in mind the goal of the study.  For example, 
decision makers must weigh the relative benefit of investing in improvements to the fidelity of a 
given physics model against the benefit of conducting relevant physical experiments for 
calibration.  Computing resources must be allocated across studies investigating detailed 
convergence, model fidelity, and completeness of UQ ensembles.  Physical experiments must be 
selected from choices ranging from experiments involving components to fully integrated 
experiments.  In industrial contexts, it is not uncommon for there to be a single budget for the 
entire process of modeling, simulator development, and UQ analysis—and the trade-offs are then 
even more critical.  Ideally, the VVUQ framework helps to inform decisions on the relative 
impact of these activities and can be used to prioritize the allocation of resources. 

Regardless of how carefully and efficiently the activities are carried out, difficult 
decisions will have to be made during the course of VVUQ.  These decisions will have to 
withstand subsequent scrutiny and review by independent third parties.  

Adequate documentation and transparency about the VVUQ process will facilitate peer 
review and provide archival information for future studies.  It is important that peer reviewers be 
given access to all relevant information, data, and computational models (including codes, where 
appropriate) used in the VVUQ process. 

 
Finding: It is important to include in any presentation of VVUQ results the assumptions as well 
as the sources of uncertainty that were considered.  Appropriate documentation and transparency 
about the process and body of knowledge that were used to assess and quantify uncertainties in 
the relevant quantities of interest are also crucial for a complete understanding of the results of 
the VVUQ analysis. 

 
 

6.3  DECISIONS BASED ON VVUQ INFORMATION  
 

Ultimately, decision makers are faced with a set of choices, each one of which will have 
certain advantages and disadvantages.  Within this framework, decision makers must make trade-
offs based on the analyses and the probabilities of the various scenarios.  For example, someone 
in environmental management may have to choose between two remediation strategies for 
cleaning up a contaminated site. The decision maker could choose an option for monitored 
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natural attenuation—in other words, leaving the site as is but closely monitoring it to make sure 
that the contamination does not spread to high-risk areas.  Or the decision maker could choose a 
more active, but also more costly, procedure that might clean up the site.  The choice of option 
will be based on several underlying computational models, each with its own set of uncertainties 
that need to be compared against one another.   

In the case of the Stockpile Stewardship Program (SSP) described in Section 6.4, similar 
types of decisions must be made.   The SSP has developed its own framework, known as 
Quantification of Margins and Uncertainty (QMU), that produces a quantity known as the 
margin-to-uncertainty (M/U) ratio (Goodwin and Juzaitus, 2006).  If the M/U ratio is “large,” 
diligence is required, but the safety, security, and reliability of the weapon system are assured.  If 
the M/U ratio approaches unity, decision makers are presented with a variety of options that 
involve trade-offs between two broad categories: increasing the margin or reducing the 
uncertainty.  Each of these choices involves decisions that must take into account computational 
models and uncertainties as well as stochastic variables. 

In many cases (and in the two examples referred to above) there is a close analogy to 
several areas of optimization that can play an important role in the mathematical foundation for 
decision making based on VVUQ.  For example, the field of multi-objective optimization 
(Miettinen, 1999) is focused on the development of methods and algorithms for the solution of 
problems that involve multiple objectives that must be simultaneously minimized.  This leads to 
approaches that can be used to trade off among different options.  Stochastic optimization 
(Emoliev, 1988; Heyman and Sobol, 2003) is another relevant area, in which some of the design 
parameters or constraints are described by random variables.  The theory for these types of 
problems could be used to develop better bounds on the uncertainties associated with each 
decision.  The simulation optimization field has other approaches.  One alternative approach is 
that of robust optimization.  Here, one seeks to find optimal solutions over a broad range of 
nonstochastic but uncertain input parameters (Ben-Tal and Nemirovski, 2002).  In this case, a 
robust solution is one that remains “optimal” under the entire range given for the uncertain input 
parameters (Taguchi et al., 1987).  These types of solutions are desirable if available, because 
decision makers can be assured that whatever option they choose, the consequences of uncertain 
input parameters will not generate large changes from the optimal solutions.  All of these 
examples indicate that optimization will be a central component of the mathematical foundation 
for decision making under uncertainty. 

A summary of the body of information that enables an assessment of the appropriateness 
of a model and its ability to predict the relevant quantities of interest (QOIs), as well as inclusion 
of the key assumptions used to make the prediction, is a necessary part of reporting model 
results.  This information will allow decision makers to understand better the adequacy of the 
model as well as the key assumptions and data sources on which the reported prediction and 
uncertainty rely.  In addition, the finding regarding transparency and documentation stated in 
Section 6.2 should be made available to decision makers and peer reviewers. 

It is important to recognize that a UQ study will often be an ongoing effort, with decision 
making happening throughout the study, with respect to both the study itself and the external 
applications.  The climate-modeling case study discussed in Section 2.10 in Chapter 2 is an 
example of such an ongoing effort—only limited UQ information is currently available for use in 
policy decisions.  This example highlights the need for the development of decision-making 
platforms that can be based on only partial or very limited UQ information.  It also highlights the 
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need to identify situations for which more detailed UQ characterization would give additional 
clarity for decision making. 

 
 

6.4  DECISION MAKING INFORMED BY VVUQ IN THE STOCKPILE 
STEWARDSHIP PROGRAM 
 

When the moratorium on nuclear testing was begun in 1992, the Department of Energy 
(DOE) established alternative means for maintaining and assessing the nation’s nuclear weapons 
stockpile. The SSP was created to “ensure the preservation of the core intellectual and technical 
competencies of the United States in nuclear weapons” (U.S. Congress, 1994).  The SSP must 
assess, on an annual basis, the safety, security, and reliability of the nuclear weapons stockpile in 
the absence of nuclear testing.  A key product of the annual assessment process is a report on the 
state of the stockpile, issued by the directors of the three national security laboratories—
Lawrence Livermore National Laboratory, Los Alamos National Laboratory, and Sandia 
National Laboratories1—to the Secretary of Energy, the Secretary of Defense, and the Nuclear 
Weapons Council.  With this report in hand, the Secretary of Energy, the Secretary of Defense, 
and the Commander of U.S. Strategic Command each write a letter to the President of the United 
States providing their individual views on the health of the stockpile and on whether nuclear-
explosive testing should resume.  The SSP assessment thus provides the technical basis for the 
President’s decision on whether or not to resume nuclear testing. 

QMU, a component in the assessment framework, is a decision-support process.  This 
case study illustrates the importance of UQ to reducing uncertainties in the QMU process and, 
thus, enhancing the decision-making process.  By quantifying the largest sources of uncertainty, 
UQ, in this case, is essential to inform resource allocation for reducing error in inputs to the 
models.  It provides a means of quantifying and then communicating the confidence in the 
performance and operation of a nuclear weapon.  QMU provides a framework for systematically 
including the results of modeling and simulation, ongoing non-nuclear experiments, legacy 
nuclear testing, and informed judgment from nuclear weapons design physicists.  A summary of 
the QMU methodology and current state of practice can be found in a study conducted by the 
National Research Council (NRC, 2009).  The key concepts in QMU are quantification of the 
margin, the threshold for acceptable performance, and quantification of the uncertainty, 
representing imperfect knowledge of the physics and manufacturing of the weapon system.  UQ 
is fundamental to the QMU framework.  

QMU is the assessment methodology for focusing the SSP on risks to the stockpile and 
for delivering and communicating UQ-informed recommendations.  As stewards of its nuclear 
deterrence capability, decision makers responsible for the nation’s nuclear weapons stockpile 
have a range of options to consider if an issue arises: 

 
 Do nothing (accepting the risks identified through QMU); 
 Reduce the uncertainty in the relevant QOIs by employing theory, simulation, and/or 

experiments; 
 Modify the weapon system; 

                                                 
1 Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly 
owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security 
Administration under contract DE-AC04-94AL85000. 
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 Engage the military to alter the characteristics of and/or requirements for the weapon 
system; 

 Modify operations within the nuclear weapons complex and/or Department of Defense; 
or 

 Cease certification of the weapon system. 
 

This decision space has high consequences because of its impact on the nation’s nuclear 
deterrence.  The options under consideration may have an impact on the deterrence posture or 
require significant expenditures or both.  Given the consequences of these decisions, the SSP 
uses QMU as a common language in all interactions (internally, in peer review, and with 
stakeholders), demonstrating the rational basis for decisions relating to the U.S. stockpile.  QMU, 
being quantitative, provides transparency to the decision-making process. 

The QMU framework, as it pertains to the SSP, requires highly trained design and 
computational physicists; it does not deliver a mathematical procedure that can be executed 
independent of informed judgment.  Design judgment, informed by quantitative input, is at the 
heart of the SSP and is an essential part of the decision-making process.  Judgment is based on 
technical rigor, tempered by experience, and demonstrated by performance.  It requires 
quantitative inputs from simulation models with a finite domain of validity, experiments, and 
theory.  In essence, judgment is knowing what questions to ask and an ability to draw 
conclusions from inputs, which are often limited and sometimes conflicting.  Judgment is not 
simply assertion, nor is it independent of hard technical assessment.  

Working with the QMU framework involves several key activities: 
 

 Determining key performance metrics against which margins will be assessed; 
 Establishing the verification and validation bases for simulation models; 
 Performing uncertainty quantification; incorporating uncertainty owing to input data, 
manufacturing variations, and model-form uncertainty (where possible); and model 
calibration (where necessary); 
 Establishing thresholds in performance metrics, and quantifying margins and 
uncertainties; and 
 Delivering a documentation basis including both the margin and the uncertainty and 
subjecting those results to internal and external peer review. 

 
Each of these activities is identified in the present report, although perhaps with slightly 

different language.  The key performance metrics are analogous to the quantities of interest 
identified in a UQ study; establishing thresholds in those metrics is a key contribution from 
experienced design staff; and VVUQ and documentation are important here as they are in other 
VVUQ activities.  Ultimately, the product is summarized as a margin with an associated 
uncertainty in the key performance metrics.  

Establishing thresholds, margins, and uncertainties must accommodate the use of 
calibrated models.  Simulation tools employed in the SSP use the best physics modeling 
achieved to date.  However, even with the vast computing resources available to the National 
Nuclear Security Administration, fully first-principles models for nuclear weapon performance 
are not practicable.  Given that, the UQ methodology must help inform how calibrated models 
diverge as simulation models are extrapolated away from the calibration point.  This concept, 
discussed above, is an essential aspect of the application of UQ within the SSP. 

6-5 
 



Copyright © National Academy of Sciences. All rights reserved.

Assessing the Reliability of Complex Models:  Mathematical and Statistical Foundations of Verification, Validation, and Uncertainty Quantification

PREPUBLICATION COPY—SUBJECT TO FURTHER EDITORIAL CORRECTION 

An increase in margin can be achieved by altering the required characteristics of the 
weapon system, modifying operations across the complex, or modifying the weapon system 
itself.  Altering the required characteristics of the weapon system must be decided in partnership 
with the Department of Defense and may not be an available option.  Modifying operations or 
the weapon system itself may require significant financial expenditures.  Further, these 
modifications may move the system away from the established calibration basis, and action that, 
by definition, introduces additional uncertainty.  The increase in margin must compensate for 
this increase in uncertainty in order to deliver a net increase in the M/U ratio. 

Reducing uncertainties can be achieved through the application of a breadth of 
capabilities available to the SSP.  A UQ-informed recommendation is a key component in this 
decision-making process.  QMU quantifies uncertainties compared to the assessed margins, 
focusing on margins that need to be increased or uncertainties that need to be reduced or better 
quantified.  A main-effects analysis, which can quantify the largest sources of uncertainty, is 
essential in order to inform resource allocation for reducing input errors.  Improvements may be 
obtained by improving the theory for the relevant physics model, which will constrain the model-
form error and possibly eliminate the need for calibration.  Improvements can also be achieved 
by conducting an experimental campaign to improve the calibration basis for simulation models, 
which constrains the error introduced by the calibration process.  Similarly, experiments may be 
performed to expand the domain of validity of the simulation models, which could reduce 
prediction uncertainty for QOI or other key metrics.  Finally, improvements can be achieved by 
reducing the errors associated with the model inputs, through improved input characterization,  
improved experimental data, or improved theory.  Importantly, UQ-informed decisions help 
identify when, in a particular focus area, “enough is enough” and continued investment is 
unlikely to improve the overall confidence in system performance. 

QMU provides a credible, quantifiable, and scientifically defensible basis for making 
programmatic decisions that impact planning, prioritizing, integrating, and communicating 
across various elements of the SSP.  A strategy to fulfill the nation’s stockpile decision-making 
responsibilities must provide a balance of capabilities—informed by QMU—across 
experimentation, physics models, simulation tools, theory, and analysis methods.  UQ-informed 
simulation capabilities enable the use of high-fidelity design studies to provide U.S. policy 
makers with options for the future, including options that affect the stockpile, the weapons 
manufacturing complex, and experimental facilities. 

 
 

6.5  DECISION MAKING INFORMED BY VVUQ AT THE NEVADA NATIONAL 
SECURITY SITE  
 
6.5.1  Background 
 

The context of this case study involving the Nevada National Security Site is Yucca Flat, 
Nevada Test Site (Figure 6.1), where a total of 659 underground nuclear tests were conducted 
between 1951 and 1992 (Fenelon, 2005).  Most of the deep, large tests at Yucca Flat were 
conducted beneath the water table in complex layers of volcanic rocks dissected by numerous 
faults.  Numerical models are being developed to predict the migration of radionuclides in the 
groundwater system away from the test cavities over the next 1,000 years.  Of particular concern 
is a regionally extensive carbonate aquifer just below the volcanic layers.  Predictions such as the 
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size and extent of the plume as it evolves over time, the total volume of water exceeding the Safe 
Water Drinking Act standards, and the mass flux of radionuclides to the lower aquifer must be 
placed in a probabilistic framework.  For the purpose of the study discussed in this report, which 
does not yet consider contaminant transport, the QOI is the increase in water volume flowing 
from the study site into the lower aquifer over the next 1,000 years.  This case study also 
illustrated the use of UQ to quantify uncertainty in the decision-making process.  In this case, 
however, the QOI under study accumulates over 1000 years and, so, cannot be observed.  The 
DOE and the Nevada Division of Environmental Protection will be making key decisions 
concerning remediation, monitoring, and future hydrogeologic data collection on the basis of the 
results of this larger investigation.  Although verification and validation play crucial roles in this 
larger effort, this case study focuses on the UQ aspects, showing how results are obtained and 
how they affect communication and decision making. 

This case study has two main phases: (1) a calibration phase, in which available 
measurements are used to constrain uncertain parameters in the model; and (2) a prediction 
phase, in which prediction uncertainty is estimated for the QOI.  

  
6.5.2  The Physical System 
 

There are many important processes to be considered in this example, some focusing 
heavily on the source term (underground nuclear tests) and others focusing on flow and transport 
processes in the groundwater.  In the former category are processes that cause drastic alteration 
in rock properties and pore water pressures near the working point and processes that distribute 
radionuclides in the cavity and beyond.  All of these processes occurred in the area surrounding 
each test site within the first few seconds after a blast.  In the latter category were processes such 
as advection, diffusion, dispersion, mass transfer between fractures and rock matrix, ground-
surface subsidence due to long-term depressurization of the aquifer, sorption to mineral surfaces, 
and radioactive decay. 

 
6.5.3  Computational Modeling of the Physical System 
 

The study models the system using two iterative-coupled codes.  The first is a 
phenomenological testing-effects model that simulates the instantaneous rock and fluid pressure 
changes that are due to underground testing.  The second is a finite-volume heat- and mass- 
transfer code (Zyvoloski et al., 1997) used to simulate the transient flow of groundwater and the 
transport of radionuclides.  The coupled model requires approximately 7 hours to run on a 3.6- 
GHz processor on a finely resolved numerical mesh (Figure 6.1.c).  Only the testing-effects and 
groundwater flow (not the radionuclide transport) portion of the simulations are considered in 
this report.  An understanding of how testing effects groundwater flow is key to addressing the 
eventual question of radionuclide transport. 

Several hundred parameters are used in this model.  Many of these are related to the 
(possibly) unique characteristics of each underground nuclear test.  Others are related to the 
permeability, porosity, and storage characteristics of the various rock layers and fault zones.  
Many (if not most) of the parameters are associated with essentially irreducible uncertainty.  
However, it is important to constrain as many parameters as possible.  Transient hydraulic head 
data, basically measuring pressure at the monitoring wells (black lines in Figure 6.1.c), were 
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collected during the period of testing at approximately 60 wells; these data were used for the 
parameter estimation.  

 
FIGURE 6.1  Yucca Flat, Nevada Test Site. (a) Study site locations of nuclear tests are denoted 
by black circles.  The green outline depicts the region being modeled.  The red circle indicates 
the location of the test well whose data are plotted in (c).  (b) Hydraulic area level data over time 
for the test well identified by the red circle in (a).  (c) Computation model grid for the high-
fidelity model includes aquifers (light and dark blue), aquitards (orange and green), and faults 
(red) lines.  The black lines denote well locations.  SOURCE: Keating et al., 2010. 
 
 
6.5.4  Parameter Estimation 
 

The model-calibration process uses the hydraulic head measurements, capturing pressure 
at the monitoring wells, collected at various times for the approximately 60 wells.  
Measurements at various times are shown for one of the wells in Figure 6.1.b.  The goal is to use 
these calibration data to constrain parameter uncertainty, which can then be used to produce 
uncertainties for the prediction of the QOI.  This prediction with its associated uncertainty can 
then be used to help make decisions regarding additional monitoring or mitigation. 

It is important that uncertainty be adequately captured in applications such as this one, in 
which no direct measurements of the QOI are available.  This UQ analysis was designed with the 
goal that it not only would produce a reasonably well-calibrated model but at the same time 
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would establish the framework for the following uncertainty-assessment phase for the QOI.  
These two goals can sometimes be in conflict in the following sense:  traditional calibration 
methods fail when parameter dimensionality is large compared to data availability (the ill-posed 
inverse problem), a frequent occurrence in hydrogeologic inverse problems.  A common strategy 
for dealing with this ill-posedness is to “fix” most model parameters at a nominal setting, 
allowing only those that are sensitive to the calibration data to vary.  Unfortunately, although this 
parsimony-based strategy can be successful in producing a set of parameters that are close to the 
measurements, it can vastly underrepresent parameter uncertainty, producing inappropriately 
certain estimates of the QOI (Hunt et al., 2007).  Here the QOI is the increase in water volume 
flowing from the study area to the lower aquifer over the next 1,000 years.   

A Bayesian formulation of the inverse problem was used to describe the uncertainty in 
the 200+ parameters induced by conditioning on the calibration data.  This requires the 
specification of a distribution and range for each of the input parameters, as well as the 
specification of a likelihood for the hydraulic head measurements given the model parameters.  
An approach called null-space Monte Carlo (Tonkin and Doherty, 2009) was used to produce 
samples from the resulting posterior distribution, which is available in the PEST2 software suite 
(Doherty, 2009).  This approach uses derivative-based searching as well as Monte Carlo 
sampling of the posterior density.  A key feature of this analysis is that the large number of 
parameters not constrained by calibration data can be freely varied in the uncertainty analysis, 
producing a wider range of outcomes for the QOI. 

This forward model is highly nonlinear and computationally demanding, which makes it 
difficult to tune and assess UQ methods for this application.  To facilitate the development and 
testing of a suitable parameter-estimation and uncertainty-analysis strategy for this application, a 
fast-running reduced model was constructed.  This reduced model (Keating et al., 2010) has a 
number of parameters similar to that of the process model and could be calibrated against the 
same data set described above.  The null-space Monte Carlo approach, after tuning and testing 
using this reduced model, is ported over to and used for the calibration of the high-fidelity CPU-
intensive process model. 

 
6.5.5  Making (Extrapolative) Predictions and Describing Uncertainty 
 

The posterior sample of parameter settings given the calibration data (which were found 
in the previous section) was then propagated forward through the computationally intensive 
process model, generating an ensemble of predictions for the QOI—the additional water volume 
attributable to the effects of nuclear testing, integrated over the study region (outlined in Figure 
6.1 [a]), and integrated over the span of 1,000 years.  A probability density function for the QOI 
estimated from this ensemble is shown in Figure 6.2.  The size of the ensemble was fairly small 
due to computational resource constraints. 

To help assess the reliability of the prediction for the QOI, an ensemble of predictions 
was generated for a quantity that had not been used in model calibration—ground-surface 
subsidence (Keating et al., 2010).  It was found that for nearly 90 percent of the model domain, 
measured subsidence fell within the bounds of the ensemble of predictions, giving some 
indication that this model can extrapolate from well-head measurement to other important model 
outputs (Keating et al., 2010). 

                                                 
2 See pesthomepage.org.  Accessed September 7, 2011. 
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FIGURE 6.2  An ensemble of predictions of the quantity of interest—the additional water 
volume expected to move to the lower aquifer owing to nuclear testing effects, integrated over 
the study region and over the time span of 1,000 years at the Yucca Flat, Nevada Test Site.  Even 
the highest values of this prediction are less than 1 percent of the total volume of water moving 
into the lower aquifer over this 1,000-year time span.  SOURCE Keating et al., 2010.   
 

Additionally, a number of discrete alternative conceptual models were created, primarily 
addressing key issues concerning the coupling of testing phenomenology and rock mechanics.  
These are essentially irreducible uncertainties.  The alternative models were equally well 
calibrated to measured field data and could be considered to be equally plausible.  The range of 
predictions generated using these discrete models was low, however, providing confidence in the 
robustness of results based on any single model. 
 
6.5.6  Reporting Results to Decision Makers and Stakeholders 
 

During the model development, analysis, and predictive phases, frequent briefings with the 
stakeholders (DOE and Nevada Division of Environment Protection) were held.  The briefings 
provided the opportunity for stakeholders to give input and feedback and to gain confidence with 
the transparency of the process.  It was particularly important to ensure that any and every 
credible conceptual model be included in the uncertainty analysis. 

 
 

6.6  SUMMARY 
 

As detailed in this chapter, a decision can be made regarding the allocation of resources 
during a VVUQ study, as well as after the VVUQ analyses are completed, the results serving as 
a key input to the decision-making process.  Clearly, the information that goes into such a 
decision is likely to be both qualitative and quantitative.  Also, decisions within the VVUQ 
process can be made to improve both qualitative and quantitative aspects of the information, just 
as might be done for designing validation experiments. 

In cases where quantitative results are needed, optimality criteria will likely involve a 
mathematical summary of information or prediction uncertainty.  The computations required to 
carry out such optimization searches are typically quite demanding, making the discussion in 
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Chapter 4 on emulation and reduced-order models relevant here.  Also, even when qualitative 
information is desired, it is often obtained through a quantitative analysis.  This was the case in 
the case study presented in Section 6.5, in which quantitative information about ground surface 
subsistence was used to produce qualitative information regarding the prediction uncertainty for 
the QOI. 

 
Finding:  High-consequence decisions have been and continue to be informed by UQ 
assessments. 
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7 Next Steps in Practice, Research, and Education for Verification, 
Validation and Uncertainty Quantification 

 
The role of verification, validation, and uncertainty quantification (VVUQ) in computational 

science and engineering has increased significantly in recent years.  As high-quality 
computational modeling becomes available in more application areas, the role played by VVUQ 
will continue to grow.  Previous chapters have addressed VVUQ as it has evolved to date in the 
computational modeling of complex physical systems.  In this chapter, the committee discusses 
next steps in the evolution of VVUQ.  This summary of its responses to the statement of task, 
includes the committee’s identification of principles and current best practices and its 
recommendations for VVUQ research and development, as well as recommendations for 
educational changes. 

 
 

7.1  VVUQ PRINCIPLES AND BEST PRACTICES 
 

As was noted in Chapter 1, the committee has confined its considerations of principles 
and best practices to the mathematical science aspects of VVUQ.  The principles and best 
practices presented here are, loosely, restricted to those aspects and do not emphasize non-
mathematical issues of physical science, communication of results, and so forth.  Historically, 
methodologies for VVUQ have evolved separately in different application areas and fields.  As a 
result, different application areas can have different approaches.  A number of recent workshops 
and conferences have assembled researchers from varied application areas and perspectives, 
aiming for a cross-fertilization of ideas and a better understanding of the connections, 
commonalities, and differences among the varied VVUQ practices.  As time passes, the 
relationships among the various practices developed in different settings will become clearer, as 
will the understanding of best practices for different kinds of applications.  However, it is 
premature to try to identify a single set of methods or algorithms that are the best tools to 
accomplish the best practices identified below.  Today, it appears that some methods and 
algorithms are better for some applications and others are better for other applications.  
Therefore, the committee identifies principles and best practices, but stops short of prescribing 
implementation methodologies.   

This section begins with some overarching remarks, moves to principles and practices for 
verification, and then addresses principles and practices for validation and prediction.  As 
previous chapters have emphasized, VVUQ analyses are not well defined unless the quantities of 
interest (QOIs) are well defined.  Defining the QOIs from the start allows a VVUQ process to 
produce more meaningful results than will be produced if the focus is on the “solution” in 
general. For example, suppose a given model accurately captures the average, or large-scale, 
features of a physical system, but not the small-scale features.  If only large-scale features are 
important in the given application, the appropriately defined QOI should be sensitive to large-
scale but not small-scale behavior. In this case the VVUQ analysis may find that the model is 
sufficiently accurate (e.g., uncertainties in the predicted QOI are sufficiently small) to provide 
actionable information.  However, if small-scale details are important, the QOI should be defined 
accordingly, and the VVUQ analysis (of the same model applied to the same physical system) 
may find that the model is too inaccurate to be of value. 
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Leveraging work from previous VVUQ analyses should be done with caution.  Since 
VVUQ results are specific to particular QOIs in particular settings, transferring results to new 
QOIs and settings can be difficult to justify.  However, one can consider applying VVUQ to a 
model over a broad set of conditions and QOIs if physical data are available to support such 
wide-ranging assessments of model accuracy and there is a firm theoretical understanding of the 
physical phenomena being modeled.  It can be argued that an example of such a situation is the 
Monte Carlo N-Particle Transport Code (MCNP),1 a particle-transport code that incorporates a 
large body of knowledge and has been tested against measurements derived from thousands of 
experiments spanning many particle types and a broad range of conditions.   

Within the VVUQ enterprise, the level of rigor employed should be commensurate with 
the importance and needs of the application and decision context. Some applications involve 
high-consequence decisions and therefore require a substantial VVUQ effort; others do not. 
 
7.1.1  Verification Principles and Best Practices 
 

Here the committee summarizes key verification principles, along with best practices 
associated with each principle.  Chapter 3 provides more detail. 

• Principle:  Solution verification is well defined only in terms of specified quantities of 
interest, which are usually functionals of the full computed solution.  

– Best practice:  Clearly define the QOIs for a given VVUQ analysis, including the 
solution verification task.  Different QOIs will be affected differently by 
numerical errors. 

– Best practice: Ensure that solution verification encompasses the full range of 
inputs that will be employed during UQ assessments. 

• Principle:  The efficiency and effectiveness of code and solution verification can often be 
enhanced by exploiting the hierarchical composition of codes and mathematical models, 
with verification performed first on the lowest-level building blocks and then on 
successively more complex levels. 

– Best practice:  Identify hierarchies in computational and mathematical models and 
exploit them for code and solution verification.  It is often worthwhile to design 
the code with this approach in mind. 

– Best practice:  Include in the test suite problems that test all levels in the 
hierarchy. 

• Principle:  Verification is most effective when performed on software developed under 
appropriate software quality practices.   

– Best practice: Use software configuration management and regression testing, and 
strive to understand the degree of code coverage attained by the regression suite. 

– Best practice:  Understand that code-to-code comparisons can be helpful, 
especially for finding errors in the early stages of development, but that in general 
they do not by themselves constitute sufficient code or solution verification. 

– Best practice:  Compare against analytic solutions, including those created by the 
method of manufactured solutions—a technique that is helpful in the verification 
process.  

                                                 
1 See mcnp-green.lanl.gov.  Accessed September 7, 2011. 
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• Principle:  The goal of solution verification is to estimate, and control if possible, the 
error in each QOI for the problem at hand.  (Ultimately, of course, one would want to use 
UQ to facilitate the making of decisions in the face of uncertainty.  So it is desirable for 
UQ to be tailored in a way to help identify ways to reduce uncertainty, bound it, or 
bypass the problem, all in the context of the decision at hand.  The use of VVUQ for 
uncertainty management is discussed in Section 6.2. “Decisions within VVUQ 
Activities”). 

– Best practice:  When possible in solution verification, use goal-oriented a 
posteriori error estimates, which give numerical error estimates for specified 
QOIs.  In the ideal case the fidelity of the simulation is chosen so that the 
estimated errors are small compared to the uncertainties arising from other 
sources. 

– Best practice:  If goal-oriented a posteriori error estimates are not available, try to 
perform self-convergence studies (in which QOIs are computed at different levels 
of refinement) on the problem at hand, which can provide helpful estimates of 
numerical error. 

– Remark:  In the absence of a posteriori or self-convergence results, the next best 
option may be to estimate numerical error in a given QOI in the problem at hand 
based on detailed assessments of numerical error in a similar QOI in a relevant 
reference problem.  However, it is challenging to define reference problems that 
permit detailed assessments but are demonstrably relevant to the problem at hand.  
It can be risky to assume that numerical errors in the reference problem are 
representative of numerical errors in the problem at hand. 

 
7.1.2  Validation and Prediction Principles and Best Practices 
 

Although the questions involving solution verification are firmly grounded in 
mathematical and computational science, the questions that arise in validation and prediction 
require statistical and subject-matter (physics, chemistry, materials, etc.) expertise as well.  They 
also require choices that involve judgment, for example in determining the relevance of 
validation studies to the prediction of a QOI in the problem at hand.  This necessary application 
of judgment warrants a brief discussion here.  The concept of a domain of applicability—a 
region of a domain space in which a validation assessment is judged to apply—is helpful in 
determining the relevance of a validation assessment to the prediction of a QOI in a given 
problem at hand.  This concept can include features, or descriptors, that characterize the problem 
space (such as ball density, radius, and drop height in the ball-drop example) as forming axes 
that define a mathematical space.  Each problem or experiment is associated with a point in the 
space; thus, the problems included in the validation assessment map to a collection of points in 
the domain space.  The problem at hand maps to another point in the space.  One can imagine 
basing a determination of relevance on the location of a particular problem point relative to the 
locations of the other points.  For example, if the new point is surrounded by validation-problem 
points, the validation study might be judged to have high relevance.   

This is an appealing notion, but any attempt to apply it with mathematical rigor must 
address significant complicating truths.  If important features are omitted from the set that is 
chosen to form axes of the space, then two problems may look similar when they actually differ 
in important ways.  This is illustrated by the “ball texture” in the ball-drop example in Section 
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1.6.  However, if all potentially important features are included, the dimension of the space may 
become intractably large.  In the ball-drop example, potential additional features could include 
ambient temperature, ambient pressure, ambient humidity, wind conditions, ball skin materials, 
ball interior structure, initial rotation applied to the ball as it is dropped, ball elasticity, ball 
coefficient of thermal expansion, and so on.  Including a large set of features would help guard 
against the omission of those that may be important.  However, this creates a high-dimensional 
domain space, which forces essentially any new problem to be “outside”  the region enclosed by 
previous problems.  This makes every prediction appear to be “extrapolative.”  In oversimplified 
terms:  if the domain space is low-dimensional, then subject-matter judgment is required to 
assess the impact of features that are not included, but if the domain space is high-dimensional, 
subject-matter expertise is required to assess the relevance of previous experience to an 
extrapolative prediction.  Either way, subject-matter expertise must inform a judgment. 

This discussion is not intended to attack the concept of a domain of applicability or to 
downplay its utility. Rather, it is intended to illustrate that mathematics alone cannot determine 
the relevance of past experience to the problem at hand, but that judgment informed by subject-
matter expertise is a necessary ingredient in making this determination. 

In spite of variations in validation and prediction practices across fields, the inherent role 
of expertise and judgment, and the rapid evolution of improved methodologies, there are some 
general principles and best practices in validation and prediction have emerged that the 
committee believes will stand the test of time.  They are summarized below.  Chapter 5 provides 
more detail. 

 
• Principle:  A validation assessment is well defined only in terms of specified quantities of 

interest (QOIs). 
– Best practice:  Early in the validation process, specify the QOIs that will be 

addressed. 
• Principle:  A validation assessment provides direct information about model accuracy 

only in the domain of applicability that is “covered” by the physical observations 
employed in the assessment. 

– Best practice:  When quantifying or bounding model error for a QOI in the 
problem at hand, systematically assess the relevance of supporting validation 
assessments (which were based on data from different problems, often with 
different QOIs).  Subject-matter expertise should inform this assessment of 
relevance (as discussed above and in Chapter 5). 

– Best practice:  If possible, use a broad range of physical observation sources so 
that the accuracy of a model can be checked under different conditions and at 
multiple levels of integration. 

– Best practice:  Use “holdout tests” to test validation and prediction 
methodologies.  In such a test some validation data is withheld from the validation 
process, the prediction machinery is employed to “predict” the withheld QOIs, 
with quantified uncertainties, and finally the predictions are compared to the 
withheld data. 

– Best practice:  If the desired QOI was not observed for the physical systems used 
in the validation process, compare sensitivities of the available physical 
observations with those of the QOI. 
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– Best practice:  Consider multiple metrics for comparing model outputs against 
physical observations. 

• Principle:  The efficiency and effectiveness of a validation assessment are often improved 
by exploiting the hierarchical composition of computational and mathematical models, 
with assessments beginning on the lowest-level building blocks and proceeding to 
successively more complex levels. 

– Best practice:  Identify hierarchies in computational and mathematical models, 
seek measured data that facilitates hierarchical validation assessments, and exploit 
the hierarchical composition to the extent possible. 

– Best practice: If possible, use physical observations, especially at more basic 
levels of the hierarchy, to constrain uncertainties in model inputs and parameters. 

• Principle:  The uncertainty in the prediction of a physical QOI must be aggregated from 
uncertainties and errors introduced by many sources, including: discrepancies in the 
mathematical model, numerical and code errors in the computational model, and 
uncertainties in model inputs and parameters. 

– Best practice:  Document assumptions that go into the assessment of uncertainty 
in the predicted QOI, and also document any omitted factors.  Record the 
justification for each assumption and omission. 

– Best practice:  Assess the sensitivity of the predicted QOI and its associated 
uncertainties to each important source of uncertainty as well as to key 
assumptions and omissions.    

– Best practice:  Document key judgments—including those regarding the 
relevance of validation studies to the problem at hand—and assess the sensitivity 
of predicted QOI and its associated uncertainties to reasonable variations in these 
judgments. 

• Principle:  Validation assessments must take into account the uncertainties and errors in 
physical observations (measured data).   

– Best practice:  Identify all important sources of uncertainty/error in validation 
data—including instrument calibration, uncontrolled variation in initial 
conditions, variability in measurement setup, and so on—and quantify the impact 
of each. 

– Best practice:  If possible, use replications to help estimate variability and 
measurement uncertainty. 

– Remark:  Assessing measurement uncertainties can be difficult when the 
“measured” quantity is actually the product of an auxiliary inverse problem—that 
is, when the quantity is not measured directly but is inferred from other measured 
quantities. 

 
 
7.2  PRINCIPLES AND BEST PRACTICES IN RELATED AREAS 
 
7.2.1 Transparency and Reporting 
 

In the presentation of VVUQ results to stakeholders, including decision makers who may 
not be familiar with the analyses, it is important to state clearly the key underlying assumptions 
along with their potential impact on the predicted QOIs, their uncertainties, and other key 
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outcomes.  In particular, UQ analyses should state which uncertainties are accounted for and 
which are not, and should give some assessment of the impact of those uncertainties not 
accounted for.  It is also important that the presentation discuss a triage of assumptions, assessing 
which have the potential to alter the outcomes and assessing the sensitivity of key outcomes to 
these alternative assumptions.  A good example of detailing model inadequacies that might affect 
overall assessment of anthropogenic impact on climate change is given in Chapter 8 of an 
Intergovernmental Panel on Climate Change report (Randall et al., 2007). 

The use of plain language, suitable for the application at hand, is most effective for 
presentations. The use of terminology that has specific meanings in mathematics, statistics, or 
VVUQ can often lead to misconceptions or misunderstandings.  As Oreskes et al. (1994) point 
out, words such as “verification” and “validation” carry common meanings that can be 
inappropriately attached to computational-model assessment.  It is also important not to confuse 
the mathematical, computational, and subject-matter science that went into building a large-scale 
computational model with the VVUQ effort that assesses the appropriateness and accuracy of the 
model-based predictions.   

Holdout tests provide a direct demonstration of a model’s ability to predict under new 
conditions and can be an effective tool for communicating certain VVUQ concepts and results.  
Holdout tests use the model to predict experimental or observational outcomes that were not used 
in the model calibration process.  Once a computational model has been calibrated with a 
particular set of physical measurements, the holdout test allows one to see how the model 
predicts the system behavior in a new setting.  Of course, assessing the degree of extrapolation in 
a given holdout test is still an open question, as the committee has discussed above. 
 
7.2.2 Decision Making 
 

Decision makers must have key information from the VVUQ process that is summarized 
and clearly communicated.  This key information includes summaries of the body of knowledge 
behind the choice of models, evidence from the verification process, sensitivities of the 
calculated QOIs to uncertainties in key parameters, quantification (from validation studies) of the 
model’s ability to match relevant measured data, assessment of modeling challenges in the 
prediction problem relative to those in the validation problems, key assumptions behind the 
predictions and quantified uncertainties, sources of uncertainty that were neglected, and so on.  If 
this information is summarized and communicated properly, results from the VVUQ process can 
play a unique and significant role in the efficient allocation of resources, management of the 
overall uncertainty budget, and generation of the soundest possible basis for high-consequence 
decisions in the presence of uncertainties. 

The results of VVUQ analyses can also be used to make decisions regarding how to 
allocate resources for future VVUQ activities—computing hardware acquisition, experimental 
campaigns, model improvement efforts, and other efforts—to improve prediction accuracy or to 
improve confidence in model-based predictions.  This decision task is made more difficult by the 
often-high cost of employing available computational models and the inability of models to 
perfectly represent reality.  A realistic assessment of model inadequacies/discrepancies is 
important for resource allocation because models can inform only about processes represented in 
the models.  If better understanding of current model inadequacies is key to improving 
predictions, then additional validation data will likely be required.  Hence approaches for 
resource allocation will necessarily require some form of qualitative assessments or judgment.  
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Given the complexity of VVUQ activities, a carefully structured planning process can help to 
ensure that resources are used efficiently and that significant factors are addressed. 
 
7.2.3 Software, Tools, and Repositories 
 

Practitioners in VVUQ currently have available to assist them a limited set of software 
and repositories (for data, examples, and code).  This is particularly true for the developing field 
of uncertainty quantification.  A number of application-specific software projects have been 
developed—Dakota,2 for engineering applications, and PEST,3 for environmental applications, 
are two notable examples.  There is also software available to carry out specific computations 
involved in the VVUQ process (e.g., sensitivity analysis, response-surface modeling, logical-
error checking for code verification, and so on.).  A recently launched Department of Energy 
(DOE) effort is focused on developing software tools for UQ in the high-performance computing 
environment. 

Such software as that described above can benefit practitioners and users.  The more 
established efforts have documentation and a user community to help with their use.  Although 
the learning curve is steep, and the framework and tools imposed by a particular software 
package may not be ideal for the application at hand, many of the utilities in current and 
developing software would be of use in many VVUQ efforts.  Separate, usable libraries of 
functions and utilities could be used internally in other software efforts, which would make them 
more useful.  

Nearly all of the available software treats the computational model as a black box that 
produces outputs for a given input setting.  Such an approach has obvious advantages for general 
use—it requires no changes to existing computational models—but will be difficult to adapt to 
newer, intrusive approaches for UQ.  

The VVUQ field would benefit from a collection of testbed examples that demonstrate 
software and VVUQ methods, provide examples of UQ analyses, and so on.  Such a repository, 
perhaps managed by the Society for Industrial and Applied Mathematics, the American 
Statistical Association, or some other professional entity with a stake in VVUQ, would allow for 
the comparison and assessment of different methods and approaches so that practitioners could 
determine the most appropriate method(s) for their particular application.  Such a repository 
would also help foster an understanding of the similarities in and differences among the various 
VVUQ approaches that have been developed in separate application areas. 
 
 
7.3 RESEARCH FOR IMPROVED MATHEMATICAL FOUNDATIONS  

 
This section discusses research directions that could improve the mathematical 

foundations of the VVUQ process. In the area of solution verification there is a need for methods 
that can accurately estimate numerical error in the computation of the problem at hand for 
mathematical models that are more complex than linear elliptic partial differential equations.  In 
the area of validation and prediction, research needs are driven largely by (1) the computational 
burden presented by large-scale computational models, (2) the need to combine multiple sources 

                                                 
2 See Dakota.sandia.gov.  Accessed September 7, 2011. 
3 See pesthomepage.org.  Accessed September 7, 2011. 
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of information, and (3) the challenges associated with assessing the quality of model-based 
predictions.  In the area of uncertainty quantification, there is a need for improved methods for 
handling large numbers of uncertain inputs (the famous “curse of dimensionality”).  There are 
promising directions for research at the interface of probabilistic/statistical modeling, 
computational modeling, high-performance computing, and application knowledge, suggesting 
that future research efforts in VVUQ should include collaborative, interdisciplinary activities. 

 
7.3.1 Verification Research 
 

The solution verification process aims to quantitatively estimate the impact of numerical 
error on a given QOI.  “Goal-oriented” methods are of particular interest, because they seek to 
estimate the error not in some abstract mathematical norm of the solution, but rather in a given 
defined functional of the solution—a particular QOI.  As is discussed in Chapter 3, methods exist 
for estimating tight two-sided bounds for numerical error in the solution of linear elliptic partial 
differential equations (PDEs), but research is needed to develop a similar level of maturity for 
estimating error given more complicated mathematical models.  In particular, the following areas 
of research have the potential for important practical improvements in verification methods. 

 
 Development of goal-oriented a posteriori error-estimation methods that can be 

applied to mathematical models that are more complicated than linear elliptic PDEs.  
There are many such models that are of significant practical interest, including 
features such as nonlinearities, multiple coupled physical phenomena, bridging of 
multiple scales, hyperbolic PDEs, and stochasticity. 

 Development of theory that supports goal-oriented error estimates on complicated 
grids, including adaptive-mesh grids.  

 Development of algorithms for goal-oriented error estimates that scale well on 
massively parallel architectures, especially given complicated grids (including 
adaptive-mesh grids). 

 Development of adaptive algorithms that can control numerical error given the kinds 
of complex mathematical models described above. 

 Development of algorithms and strategies that efficiently manage both discretization 
error and iteration error, given the kinds of complex mathematical models described 
above. 

 Development of methods to estimate error bounds when meshes cannot resolve 
important scales.  An example is turbulent fluid flow. 

 Further development of reference solutions, including “manufactured” solutions, for 
the kinds of complex mathematical models described above. 

 For computational models that are composed of simpler components, including 
hierarchical models: development of methods that use numerical-error estimates from 
the simpler components, along with information about how the components are 
coupled, to produce numerical-error estimates for the overall model. 

 
7.3.2 UQ Research 
 

Although continued effort in improving methodology for building response surfaces and 
reduced-order models will likely prove fruitful in VVUQ, new research directions that consider 
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VVUQ issues from a broader perspective are likely to yield more substantial gains in efficiency 
and accuracy.  For example, response surface methods mentioned in Chapter 4 may consider 
both probabilistic descriptions of the input and the form of the mathematical/computational 
model to describe output uncertainty, leading to efficiency gains over standard approaches.   
Embedded, or intrusive, approaches, such as those that use adjoint information for verification, 
sensitivity analyses, or inverse problems, tackle the problem from a perspective that leverages 
computational modeling aspects of the application, often achieving substantial gains in 
computational efficiency.  In large-scale problems some approaches have folded in 
considerations regarding the computing architecture as well.  However, beyond these examples, 
there is little in the current literature on how to exploit capabilities of high performance 
computing in the service of VVUQ.  The committee expects that VVUQ methodological 
research, operating from this broader perspective, will continue to be fruitful in the future.   

Some applications use a collection of hierarchically connected models.  In some cases, 
outputs from one model serve as inputs to another.  Examples include the modeling of nuclear 
systems, or the reentry vehicle application described in Section 5.9.  In other cases, a hierarchy 
of low- to high-fidelity computational models is available for modeling a particular system.  An 
example is the modeling of radiative heat transfer using gray diffusion (low), multi-group 
diffusion (medium), or multi-group transport (high).  In other cases, an application uses models 
that span multiple scales.  In materials science, for example, where different models simulate 
phenomena at different scales ranging from molecular to mesoscale to large scale, where bulk 
properties such as strength emerge.  In regional climate modeling, global and regional models are 
coupled to produce regional climate forecasts.  In all of these cases there is opportunity to 
develop efficient approaches for VVUQ analyses that take advantage of a hierarchical structure. 

There are challenges in such approaches, however.  Liu et al. (2009) point out some of the 
obstacles that arise in the routine application of methodologies to link models.  Determining how 
best to allocate resources for VVUQ investigations—an optimization problem—is an important 
UQ-related task that could benefit from further research.  Optimization may take place rather 
narrowly, as in determining the best initial conditions over which to carry out a sequence of 
experiments, or more broadly, as in deciding between improving a module of the computational 
model or carrying out a costly experiment for a large VVUQ effort.  Any such question requires 
some form of optimization while accounting for many sources of uncertainty. 

The preceding paragraphs discuss areas in which improvements are needed in UQ 
methodology, and more detail is provided in Chapter 4.  Here the committee summarizes some 
research directions that have the potential to lead to significantly improved UQ methods. 

 Development of scalable methods for constructing emulators that reproduce the high-
fidelity model results at training points, accurately capture the uncertainty away from 
training points, and effectively exploit salient features of the response surface. 

 Development of phenomena-aware emulators, which would incorporate knowledge 
about the phenomena being modeled and thereby enable better accuracy away from 
training points (e.g., Morris, 1991). 

 Exploration of model reduction for optimization under uncertainty. 
 Development of methods for characterizing rare events, for example by identifying 

input configurations for which the model predicts significant rare events, and 
estimating their probabilities. 

 Development of methods for propagating and aggregating uncertainties and 
sensitivities across hierarchies of models. (For example, how to aggregate sensitivity 

7-9 
 



Copyright © National Academy of Sciences. All rights reserved.

Assessing the Reliability of Complex Models:  Mathematical and Statistical Foundations of Verification, Validation, and Uncertainty Quantification

PREPUBLICATION COPY—SUBJECT TO FURTHER EDITORIAL CORRECTION 

analyses across micro-scale, meso-scale, and macro-scale models to give accurate 
sensitivities for the combined model remains an open problem.) 

 Research and development in the compound area of (1) extracting derivatives and 
other features from large-scale computational models and (2) developing UQ methods 
that efficiently use this information. 

 Development of techniques to address high-dimensional spaces of uncertain inputs.  
An important subset of problems is characterized by a large number of uncertain 
inputs that are correlated through sub-scale physical phenomena that are not included 
in the mathematical model being studied (an example of which is interaction 
coefficients in models involving particle transport). 

 Development of algorithms and strategies, across the spectrum of UQ-related tasks, 
that can efficiently use modern and future massively parallel computer architectures. 

 Development of optimization methods that can guide resource allocation in VVUQ 
while accounting for myriad sources of uncertainty. 

 
7.3.3 Validation and Prediction Research 
 

While many VVUQ tasks introduce questions that can be posed and answered (in 
principle) within the realm of mathematics, validation and prediction introduce questions whose 
answers require judgments from the realm of subject-matter expertise.  It is challenging to 
quantify the effect of such judgments on VVUQ outcomes—that is, to translate them into the 
mathematical realm.  This effort comes under the heading of assessing the quality of model-
based predictions, which is a key research direction for improving the mathematical foundations 
of VVUQ.   

For validation, “domain of applicability” is recognized as an important concept, but how 
one defines this domain remains an open question.  For predictions, characterizing how a model 
differs from reality, particularly in extrapolative regimes, is a pressing need.  While the literature 
has offered simple additive discrepancy models, as well as embedded, physically motivated 
discrepancy models (as in Box 5.1), advances in linking a model to reality will likely broaden the 
domain of applicability and improve confidence in extrapolative prediction.   

Although multimodel ensembles offer an attractive pathway for assessing uncertainty due 
to model inadequacy, approaches to date have largely used ensembles of convenience, limiting 
their usefulness.  While something is usually better than nothing, more rigorously constructed 
ensembles of models, designed so that reality is included within their spans, could ultimately 
provide a better foundation for assessing uncertainty.  In a similar vein, some have advocated the 
use of more highly parameterized models to improve the chances of covering reality (Doherty 
and Welter, 2010), giving more realistic prediction uncertainties.  

The use of large-scale computational models in searching out rare, high-consequence 
events, or estimating their probability, is particularly susceptible to discrepancies between model 
and reality.  In such situations, models are almost always an extrapolation from available data, 
often extreme extrapolations.  Here too, research is needed. 

The preceding paragraphs discuss areas in which improvements are needed in validation 
and prediction methodology, and more detail is provided in Chapter 5.  Here the committee 
summarizes some research directions that have the potential to lead to significantly improved 
validation and prediction methods. 
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 Development of methods and strategies to quantify the effect of subject-matter 
judgments, which necessarily are involved in validation and prediction, on VVUQ 
outcomes. 

 Development of methods that help to define the domain of applicability of a model, 
including methods that help to quantify the notions of near neighbors, interpolative 
predictions, and extrapolative predictions. 

 Development of methods that incorporate mathematical, statistical, scientific, and 
engineering principles to produce estimates of uncertainty in “extrapolative” 
predictions. 

 Development of methods or frameworks that help with the all-important problem of 
relating model-to-model differences, for models in an ensemble, to the discrepancy 
between models and reality. 

 Development of methods to assess model discrepancy and other sources of 
uncertainty in the case of rare events, especially when validation data does not 
include such events. 

 
Much of the research in this area should be a joint venture between subject-matter 

experts, mathematical/statistical experts, and computational modelers.  The committee believes 
that the traditional funding plan in which funding is separated by field (mathematical sciences, 
computational science, basic science) is not ideal for making progress in the area of extrapolative 
predictions.   
 
 
7.4 EDUCATIONAL CHANGES FOR THE EFFECTIVE INTEGRATION OF VVUQ 
 

The previous sections outline the current practices and future directions of VVUQ for large-
scale computational simulations.  Although scientists, engineers, and policy makers should of 
course use current best practices, there are important issues that have to be addressed to bring 
this about: (1) how to get the main concepts of VVUQ into the hands of those who need them so 
that the best practices become commonplace and (2) how to prepare the next generation of 
researchers.  This section discusses educational changes in the mathematical sciences community 
that aim to integrate VVUQ and lay the foundation for improved methods and practices for the 
future. 

As is discussed throughout this report, several broad tasks are included in VVUQ, and these 
tasks are likely to be performed by individuals with different areas of expertise.  It is important 
that those involved understand these broad tasks and their implications.  For instance, it is 
unlikely that a policy maker will carry out the task of code verification, but it is important that 
the person making the decisions understand the difference between a code that has gone through 
a VVUQ process and a code that has not.  Conversely, it is equally important that computational 
modelers are cognizant of the potential uses of the computer code and that the predictive 
limitations of the computational model are clearly spelled out. 

A report of the National Academy of Engineering (NAE), The Engineer of 2020: Visions of 
Engineering in the New Century, includes in its Executive Summary the vision of “improving 
our ability to predict risk and adapt systems” (NAE, 2004, p. 3).  The same report describes the 
role of future engineers as continuing “to create solutions that minimize the risk of complete 
failure” (NAE, 2004, p. 24).  In its report Vision 2025, the American Society of Civil Engineers 
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(ASCE, 2006) describes civil engineers as (1) managers of risk and uncertainty caused by natural 
events, accidents, and other threats and (2) leaders in discussions and decisions shaping public 
environmental and infrastructure policy.  It is reasonable to believe that similar characterizations 
enter the vision of other engineering and scientific disciplines.  

A scientist or an engineer may have a part in several of the VVUQ tasks.  Education plays 
an important role in making the best practices of VVUQ routine, and education and training 
should be targeted at the correct audiences, as is discussed this further below. 

 
7.4.1 VVUQ at the University 
 

The development and implementation of VVUQ have been motivated by drivers similar 
to those underlying the NAE and ASCE visions.  At the present time, topics in VVUQ are 
discussed at research conferences.  Select topics come up in a few (usually graduate) 
engineering, statistics, and computer science courses, but a more encompassing view of VVUQ 
is not yet a standard part of the education of most undergraduate or graduate students.  Because 
of the need to assess and manage risk and uncertainty within traditional mathematics-based 
modeling and to have confidence in the models for decision making, the educational objectives 
for VVUQ that could impact all undergraduate and graduate students in engineering, statistics, 
and the physical sciences should include the following: 

 
1. Probabilistic thinking, 
2. Science- and engineering-based modeling, and . 
3. Numerical analysis and scientific computing.  

 
Note that item 1 is included in some science and engineering programs, although it is often not 
required, and items 2 and 3 are not normally included in most probability and statistics or 
computer-science programs.  With respect to items 1 and 2, it is necessary to identify 
mathematical tools relevant to applying probability and science together to address practical 
problems.  With respect to items 2 and 3, it is necessary to understand how uncertainty can be 
introduced into deterministic physical laws, and how evidence should be weighted to make 
model-based decisions. 

It is reasonable to view VVUQ as motivating the need for an intellectual watershed 
merging items 1 through 3.  VVUQ sits at the confluence of statistics, physics/engineering, and 
computing, which are themes that are usually discussed separately.  To appreciate these 
distinctions, note that uncertainty is intimately associated with both observations and 
computational models.  It is not about physical processes themselves, but rather about one’s 
interpretation (as embodied in mathematical models, assumptions, and uncertainty in data) of 
these processes.  (If a physical process is random it introduces another kind of uncertainty, which 
can be addressed within the mathematical model.)  This perspective also holds for more 
empirically based models from fields such as operations research, psychology, and economics.  
Computational science is relevant to the extent that it permits the exploration of more detailed 
models, which helps to make better inferences about the real processes.  

At the present time, undergraduate students are typically taught models of reality often 
without being introduced to the significance of the modeling process and without a critical 
assessment of associated assumptions and uncertainties.  In engineering design courses, for 
example, students are most often introduced to a fait accompli in which a lack of knowledge and 
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other uncertainties have already been integrated into a collection of safety factors.  Students 
sometimes take advanced science and engineering courses before they have gained exposure to 
first principles of probability and statistics.  Moreover, probability and statistics courses for 
engineering undergraduate students deal largely with data analysis (computing means, averages, 
point estimates, and confidence intervals) and do not introduce many concepts that are important 
to VVUQ.   

A modern curriculum in UQ should equip its students with the foundation to reason about 
risks and uncertainty.  This educational goal should include an understanding of the nature of 
risks associated with engineered and natural processes in an increasingly complex and 
interconnected world.  Recent and ongoing events—including the nuclear reactor meltdown in 
Japan, the Deepwater Horizon blow-out, engine failure in an Airbus 380 superjumbo jet, and the 
accelerated meltdown of ice sheets, among other examples—provide ready examples to motivate 
an understanding of the prevalence of risk.  These problems are multifaceted and involve 
modeling themes from several traditional disciplines.  A modern curriculum should foster an 
appreciation of the role that modeling and simulation could play in addressing such complex 
problems; providing clearer assessment of exposure, hazard, and risk; and informing assessments 
of technical strategies for mitigating such hazards and risks.  The curriculum should address 
effective communication of uncertainty and risk to decision makers, stakeholders, and UQ 
experts.  

What might this mean for university programs?  The required material to be integrated 
into an educational program will depend on the field.  Students in engineering and science are 
routinely taught science- and engineering-based modeling and numerical methods and 
computing.  Students of probability and statistics are taught probabilistic thinking and perhaps 
some numerical methods and computing.  Decision makers (say, students of management) are 
likely to be introduced only to probabilistic thinking.  The implications for different fields are 
briefly discussed below. 

 
Recommendation: An effective VVUQ education should encourage students to confront and 
reflect on the ways that knowledge is acquired, used, and updated.   
 
This recommendation can be achieved by assimilating relevant components of VVUQ as a 
fundamental scientific process into a minimal subset of core courses, sequenced in a manner that 
is conducive to the objective.  Given the constraints of existing curricula, the alternative of 
integrating one or more new courses may not be feasible.   
 

 Engineering and science.  Any proposed educational program should respect the need for 
a logical sequence in knowledge acquisition.  One can propose a route that first 
introduces the ubiquity of uncertainty throughout science and engineering.  For example, 
this approach can be facilitated by the development of a number of examples that explain 
uncertainties associated with natural phenomena and engineering systems (e.g., the ball-
drop examples in Chapters 1 and 5).  This step can be followed by an introduction to 
probabilistic thinking, including classical as well as Bayesian statistics.  Many of these 
ideas can likely be integrated into existing courses rather than requiring the introduction 
of new courses into an already-crowded curriculum.  The engineering design process, as 
embodied in capstone design courses, can then be presented as a decision process aimed 
as selecting from competing alternatives, subject to various constraints.  This formulation 
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of the design process has the added benefit of articulating to the student the scientific 
distinctions between various design paradigms or procedures (usually presented in the 
form of design recipes).  It may be that some programs already have such approaches, but 
they are not common.   

 It is important to teach students to regularly confront uncertainty in input data and 
corresponding uncertainty in their stated answers.  The committee encourages instructors 
in traditional courses to pose questions that include uncertainty in the input formation.  

 
 Probability and statistics.  Similar to engineers and scientists, students of probability and 

statistics should acquire training in mathematical modeling as well as in computational 
and numerical methods.  Again, the path to doing so should build on the logical sequence 
of discipline-specific core training.  The key is understanding how probabilistic thinking 
fits into the scientific process (e.g., how probability fits together with mathematical 
modeling) and also understanding the limits of computation.   
 

Recommendation:  The elements of probabilistic thinking, physical-systems modeling, and 
numerical methods and computing should become standard parts of the respective core curricula 
for scientists, engineers, and statisticians.   
 

 Programs in management sciences.  The intellectual framework represented by VVUQ 
seeks to assess the uncertainty in answers to a problem with respect to uncertainties in the 
given information.  It is unlikely that students who are being trained as policy makers are 
going to be routinely interested in computational modeling, but it is important that they 
be educated in assessing the quality and reliability of the information that they are using 
to make decisions and also in assessing the inferential limits of the information.  In the 
VVUQ context, this can mean, for example understanding whether or not to trust a model 
that has undergone a VVUQ process, or understanding the distinction between 
predictions that have been informed by observations and those that have not. 

 
It will be a challenge for individual university departments to take the lead in integrating 

VVUQ into their curricula.  An efficient way of doing so would be to share the load among the 
relevant units.  A way forward is emerging as a result of the DOE’s Predictive Science Academic 
Alliance Program (PSAAP).  For example, at the University of Michigan’s Center for Radiative 
Shock Hydrodynamics (CRASH), both graduate and undergraduate students are included in the 
fundamental VVUQ steps as part of CRASH’s core mission. More importantly in the current 
context, as a result of PSAAP, the university is initiating an interdisciplinary Ph.D. program in 
predictive science and engineering.  Students in the program have a home department but will 
also take courses and develop methodology relating to VVUQ. (A course in VVUQ has already 
been taught.)  The Computational Science, Engineering and Mathematics program at the Institute 
for Computational and Engineering Sciences at the University of Texas also has a similar 
graduate program. It is not hard to imagine a similar interdisciplinary program (perhaps a 
certificate program in predictive science) being rolled out to undergraduate students in 
engineering, physics, probability and statistics, and possibly management science.  

 
Finding:  Interdisciplinary programs incorporating VVUQ methodology are emerging as a result 
of investment by granting bodies. 
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Recommendation:  Support for interdisciplinary programs in predictive science, including 
VVUQ, should be made available for education and training to produce personnel that are highly 
qualified in VVUQ methods. 
 
7.4.2 Spreading the Word 
 

VVUQ plays an important role, with far-reaching consequences, in making sense of the 
information provided by computational models, observations, and expert judgment.  It is 
important to communicate the best practices of VVUQ to those creating and using computational 
models and also to instructors in university programs.   

To this end, several activities could be undertaken.  For example,  to provide assistance to 
instructors some model problems and solutions have to be made available.  In this spirit, people 
with expertise in the areas of VVUQ can be encouraged to write an article or series of articles 
targeted to an educational journal, in which problems are introduced and solutions are outlined.   
 
Recommendation:  Federal agencies should promote the dissemination of VVUQ materials and 
the offering of informative events for instructors and practitioners. 
 

This type of contribution would go a long way toward sharing important ideas and 
suggesting how they might be implemented in a classroom setting.  Along the same lines, the 
NAE could perhaps devote a special issue of its quarterly publication The Bridge to this type of 
initiative. It is also important to build on existing resources, such as the American Statistical 
Association’s Guidelines for Assessment and Instruction in Statistics Education, GAISE, which 
addresses the statistical component of VVUQ, and highlight the need for a good understanding 
of data modeling, data analysis, data interpretation, and decisions.  For existing practitioners, 
educational activities should be routinely included at conferences and also through the 
mathematical sciences institutes (e.g., the Statistical and Applied Mathematical Sciences Institute 
in Research Triangle Park, North Carolina, and the Mathematical Sciences Research Institute in 
Berkeley, California). 
 
 
7.5 CLOSING REMARKS 
 

This chapter attempts to peer into the future of VVUQ and to summarize the committee’s 
responses to its tasking.  It identifies key principles that we found to be helpful and identifies 
best practices that the committee has observed in the application of VVUQ to difficult problems 
in computational science and engineering.  It identifies research areas that promise to improve 
the mathematical foundations that undergird VVUQ processes.  Finally, it discusses changes in 
education of professionals and dissemination of information that should enhance the ability of 
future VVUQ practitioners to improve and properly apply VVUQ methodologies to difficult 
problems, enhance the ability of VVUQ customers to understand VVUQ results and use them to 
make informed decisions, and enhance the ability of all VVUQ stakeholders to communicate 
with each other.  These observations and recommendations are offered in the hope that they will 
help the VVUQ community as it continues to improve VVUQ processes and broaden their 
applications.
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Appendix A 
Glossary 

TABLE A.1  Glossary of Terms Related to Verification, Validation, and Uncertainty Quantification 
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Term, with Synonyms and Cross-
Referenced Definition Notes and Comments  
 
accuracy  
See also precision. 

 
A measure of agreement between 
the estimated value of some 
quantity and its true value. 
(Adapted from Society for Risk 
Analysis [SRA] Glossary.a) 
 

 
See note under precision. 

adjoint map  Given a map (i.e., forward model) 
from an input vector space to an 
output vector space, the adjoint is 
an associated map between the 
vector space of linear real-valued 
functions on the output space to 
the vector space of linear real-
valued functions on the input 
space.  Given a linear real function 
on the output space, a linear real 
function on the input space is 
obtained by first applying the 
original map to any specified 
vector in the input space and then 
applying the given linear real 
function on the output space.  

The adjoint map is important for 
determining properties of the 
original map when the input and 
output vectors cannot be observed 
directly. It plays a fundamental 
role in the theory of maps, e.g., for 
determining solvability of inverse 
problems, stability and sensitivity, 
Green’s functions, and derivatives 
of the output of a map with respect 
to the input.  The concrete 
formulation and evaluation of an 
adjoint depend heavily on the 
properties of the original map (i.e., 
forward model) and the input and 
output spaces, with extra care 
needed for nonlinear maps.  See 
Appendix B in this report. 
 

aleatoric uncertainty 
Synonyms: aleatoric probability, 
aleatoric uncertainty, systematic 
error  
See also probability, epistemic 
uncertainty. 

A measure of the uncertainty of 
an unknown event whose 
occurrence is governed by some 
random physical phenomena that 
are either (1) predictable, in 
principle, with sufficient 
information (e.g., tossing a die); or 
(2) essentially unpredictable 
(radioactive decay).b   
 

See epistemic uncertainty. 

algorithm A finite list of well-defined 
instructions that, when executed, 
proceed through a finite number of 
well-defined successive states, 
eventually terminating and 
producing an output.  

 

The instructions and executions 
are not necessarily deterministic; 
some algorithms incorporate 
random input (see Monte Carlo 
simulation).  



Copyright © National Academy of Sciences. All rights reserved.

Assessing the Reliability of Complex Models:  Mathematical and Statistical Foundations of Verification, Validation, and Uncertainty Quantification

PREPUBLICATION COPY—SUBJECT TO FURTHER EDITORIAL CORRECTION 

A-2 
 

approximation 
See also estimation (of parameters 
in probability models). 

The result of a computation or 
assessment that may not be exactly 
correct, but that is adequate for a 
particular purpose.c 
 

  

average 
Synonyms: arithmetic mean, sample 
mean 
See also mean. 

The sum of n numbers divided by 
n. d, e, f 

The average is a simple arithmetic 
operation requiring a set of n 
numbers.  It is often confused with 
the mean (or expected value), 
which is a property of a 
probability distribution.  One 
reason for this confusion is that the 
average of a set of realizations of a 
random variable is often a good 
estimator of the mean of the 
random variable's distribution. 
 

Bayesian approach 
See also prior probability. 

An approach that uses 
observations (data) to 
constrain uncertain 
parameters in a probabilistic 
model.  The constrained 
uncertainty is described by a 
posterior probability 
distribution, produced using 
Bayes’ theorem to combine 
the prior probability 
distribution with the 
probabilistic model of the 
observations. 

 

In most problems, the Bayesian 
approach produces a high-
dimensional probability 
distribution describing the joint 
uncertainty in all of the model 
parameters.  Functionals or 
integrals of this posterior 
distribution are typically used to 
summarize the posterior 
uncertainty.  These summaries are 
typically produced by means of 
numerical approximation or 
sampling methods such as 
Markov chain Monte Carlo. 
 

code verification 
See also verification, solution 
verification. 

The process of determining 
and documenting the extent 
to which a computer 
program (“code”) correctly 
solves the equations of the 
mathematical model. 

 

 

computational model 
Synonym: computer model 
See also model (simulation). 

Computer code that 
(approximately) solves the 
equations of the mathematical 
model. 
 

In physically based applications 
the computational model might 
encode physical rules such as 
conservation of mass or 
momentum. In other applications 
the computational model might 
also produce a Monte Carlo or a 
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discrete-event realization.  
 

conditional probability  
See also probability. 

The probability of an event 
supposing (i.e., "conditioned on") 
the occurrence of other specified 
events.  

In the Bayesian approach, the 
posterior distribution is a 
conditional probability 
distribution, conditioned on the 
physical observations.  It is 
important to note that subjectively 
assessed probabilities are based on 
the state of knowledge that holds 
at the time of the probability 
assessment. 
 

confidence interval 
Synonym: interval 
 

A range of values [a, b] 
determined from a sample, using a 
predetermined rule chosen such 
that, in repeated random samples 
from the same population, the 
fraction of computed ranges will 
include the true value of an 
unknown parameter.  The values a 
and b are called confidence limits; 
 is called the confidence 
coefficient (commonly chosen to 
be .95 or .99); and 1 −  is called 
the confidence level. (Adapted 
from SRA Glossary). 
 

Confidence intervals should not be 
interpreted as implying that the 
parameter itself has a range of 
values; it has only one value.  For 
any given sample the confidence 
limits a and b define a random 
range within which the parameter 
of interest will lie with probability 
 (provided that the actual 
population satisfies the initial 
hypothesis). 
 

constrained uncertainty 
See also Bayesian approach. 

Uncertainty about a parameter, 
prediction, or other entity that has 
been reduced by incorporating 
additional information, such as 
new physical observations. 
 

For most of the examples in this 
report, uncertainty is constrained 
using the Bayesian approach, 
conditioning on physical 
observations, producing a 
posterior distribution for 
parameters and predictions. 
 

continuous random variable 
See also cumulative distribution 
function, probability density 
function. 

A random variable, X, is 
continuous if it has an absolutely 
continuous cumulative 
distribution function. 
 

 

cumulative distribution function 
Synonyms: cumulative distribution, 
cdf, distribution function 
See also probability density 

The probability that a random 
variable X will be less than or 
equal to a value x; written as  
P{X ≤ x}. f, g 

The cdf always exists for any 
random variable; it is monotonic 
nondecreasing in x, and (being a 
probability 0 ≤ P{X ≤ x} ≤1.  If 
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alues. 

epistemic uncertainty  
ability 

 representation of uncertainty 

ch 
er 

Some examples of epistemic 
ity 

 at 
tion 

function, probability distribution. 
 

P{X ≤ x} is absolutely continuous 
in x, then X is called a continuous 
random variable; if it is 
discontinuous at finite or 
countably infinite number of 
values of x, and constant 
otherwise, X is called a discrete 
random variable. 
 

data assimilation A recursive process for producing 
predictions with uncertainty 
regarding some process, 
commonly used in weather 
forecasting and other fields of 
geoscience.  At a given iteration, 
new physical observations are 
combined with model-based 
predictions to produce updated 
predictions and updated estimates 
of the current state of the system.  
 

The combination method is 
usually based on Bayesian 
inference.  The Kalman filter, the 
ensemble Kalman filter, and 
particle filters are examples of 
approaches with which data 
assimilation is carried out.   

data verification and validation The process of verifying the 
internal consistency and 
correctness of data and validating 
that they represent real-world 
entities appropriate for their 
intended purpose or an expected 
range of purposes.h 
 

 

discrete random variable 
See also cumulative distribution 
function. 

A random variable that has a non-
zero probability for only a finite, 
or countably infinite, set of v
 

 

Synonym: epistemic prob
See also aleatoric uncertainty. 

A
about propositions due to 
incomplete knowledge.  Su
propositions may be about eith
past or future events. 

uncertainty are (1) a probabil
density function describing 
uncertainty regarding the 
acceleration due to gravity
Earth’s surface; (2) determina
of the probability that a required 
maintenance procedure will, in 
fact, be carried out.  
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estimation (of parameters in 
probability models) 
See also approximation. 

A procedure by which sample data 
are used to assess the value of an 
unknown quantity. 

Estimation procedures are usually 
based on statistical analyses that 
address their efficiency, 
effectiveness, limiting behaviors, 
degrees of bias, etc.  The most 
common methods of parameter 
estimation are "maximum 
likelihood" and the method of 
moments.  Under the Bayesian 
approach estimates can be 
produced by taking the mean, 
median, or most likely value 
determined by the posterior 
distribution. 
 

expected value 
Synonym: expectation 
See also mean. 

The first moment of the 
probability distribution of a 
random variable X; often denoted 
as E(X) and defined as ∑ xip(xi) if 
X is a discrete random variable 
and ∫ xf(x)dx if X is a continuous 
random variable.d, f   
 

 
 

extrapolative prediction 
See also interpolative prediction. 

The use of a model to make 
statements about quantities of 
interest (QOIs) in settings (initial 
conditions, physical regimes, 
parameter values, etc.) that are 
outside the conditions for which 
the model validation effort 
occurred.  
 

 

face validation 
See also validation. 

A nonquantitative “sanity check” 
on a model that requires both its 
structural content and outputs to be 
consistent with well-understood 
and agreed-on forms, ranges, etc. 

Face validation should not be used 
by itself as a formal validation 
process.  Instead, it should be used 
to guide model development, 
design of sensitivity analyses, etc. 
 

forward problem 
See also inverse problem. 

The use of a model, given the 
values of all necessary inputs 
(initial conditions, parameters, 
etc.), to produce potentially 
observable QOIs. 
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forward propagation  
Synonym: uncertainty propagation 
(UP) 
See also forward problem. 
 

Quantifying the uncertainty of a 
model’s responses that results 
from uncertainty in the model’s 
inputs being propagated through 
the model. 
 

 

global statistical sensitivity 
analysis  
See also sensitivity analysis. 

The study of how the uncertainty 
in the output or QOI of a model 
(numerical or otherwise) can be 
apportioned to different sources of 
uncertainty in the model input.  
The term “global” ensures that the 
analysis considers more than just 
local or one-factor-at-a-time 
effects.  Hence interactions and 
nonlinearities are important 
components of a global statistical 
sensitivity analysis.  
 

Global statistical sensitivity 
analysis is distinguished from 
local, or one-at-a-time, sensitivity 
analyses in that interactions and 
nonlinearities are considered. 

input verification  
See also verification. 

The process of determining that 
the data entered into a model or 
simulation accurately represent 
what the developer intends. 
(Adapted from DoD, 2009.)  
 

 

interpolative prediction  
See also extrapolative prediction. 

The use of a model to make 
statements about QOIs in regimes 
within which the model has been 
validated. 
 

In practice, it may be difficult to 
determine if a particular prediction 
is an interpolation or not. 

intrusive methods  
See also non-intrusive methods 
(black box methods). 
 

Approaches to exploring a 
computational model that require 
a recoding of the model.  Such a 
recoding might be done in order to 
efficiently produce derivative 
information using the adjoint 
equation to facilitate a sensitivity 
analysis. 
 

 

inverse problem  
See also forward problem. 

An estimation of a model’s 
uncertain parameters by using 
data, measurements, or 
observations. 

An inverse problem is often 
formulated as an optimization 
problem that minimizes an 
appropriate measure of the 
“differences” between observed 
and model-predicted outputs (with 
constraints—or penalty costs—on 
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the values of some of the 
parameters). 
 

level of fidelity  
See also validation. 

The amount of detail with which a 
model describes an actual process.  
Relevant features might include 
the descriptions of geometry, 
model symmetries, dimensionality, 
or physical processes in the model.  
A high-fidelity models attempt to 
capture more of these features than 
do low-fidelity models.  
 

A high level of fidelity does not 
necessarily imply that the model 
will give highly accurate 
predictions for the system.  
 

likelihood  
See also probability, uncertainty. 

The likelihood, L(A | D), of an 
event, A, given the data, D, and a 
specific model, is often taken to be 
proportional to P(D | A), the 
constant of proportionality being 
arbitrary.i 

In informal usage, "likelihood" is 
often a qualitative description of 
probability or frequency.  
However, equally often these 
descriptions do not satisfy the 
axioms of probability.   
 

linear regression  
Synonym: regression 
See also nonlinear regression. 
 

Regression when the function to 
be fit is linear in the independent 
variables. 

 

 

Markov chain Monte Carlo 
(MCMC) 
 

A sampling technique that 
constructs a Markov chain to 
produce Monte Carlo samples 
from a typically complicated, 
multivariate distribution.  The 
resulting sample is then used to 
estimate functionals of the 
distribution. 
 

MCMC typically requires many 
fewer points than grid-based 
sampling methods require.  
MCMC approaches become 
intractable as the complexity of the 
forward problem and the 
dimension of the parameter spaces 
increase. 
 

mathematical model  
Synonym: conceptual model 
See also model (simulation). 

A model that uses mathematical 
language (sets of equations, 
inequalities, etc.) to describe the 
behavior of a system. 
 

 

mean  
See also expected value, average. 

The first moment of a probability 
distribution, with the same 
mathematical definition as that of 
expected value.  The mean is a 
parameter that represents the 
central tendency of a distribution.d, 
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e, g, j  
 

measurement error 
 

The discrepancy between a 
measurement and the quantity that 
the measurement instrument is 
intended to measure.k  

Measurement error is often 
decomposed into two components: 
replicate variation and bias. 
 

model (simulation)  
See also simulation. 

A representation of some portion 
of the world in a readily 
manipulated form.  A 
mathematical model is an 
abstraction that uses mathematical 
language to describe the behavior 
of a system.l  
. 
 

Mathematical models are used to 
aid our understanding of some 
aspects of the real world and to aid 
in decision making.  They are also 
valuable rhetorical tools for 
presenting the rationale supporting 
various decisions, since they 
arguably allow for transparency 
and the reproduction of results by 
others.  However, models are only 
as good as their (validated) 
relationship to the real world, and 
within the context for which they 
are designed. 
 

model discrepancy  
Synonyms: model inadequacy, 
structural error 
 

A term accounting for or 
describing the difference between 
a model of the system and the true 
physical system.  

In some cases, model discrepancy 
is the dominant source of 
uncertainty in model-based 
predictions.  When relevant 
physical data are available, model 
discrepancy can be estimated.  
Estimating this term when relevant 
physical observations are not 
available is difficult.  
 

Monte Carlo simulation  
See also model (simulation). 

A model constructed so that the 
input of a large number of random 
draws from defined probability 
distributions will generate outputs 
that are representative of the 
random behavior of a particular 
system, phenomenon, 
consequences, etc., of a series of 
events.m   

Each set of "runs" of a simulation 
inherently represents the outcomes 
of a series of experiments.  The 
analysis of simulation output data 
therefore requires a proper 
experimental design, followed by 
the use of statistical techniques to 
estimate parameters, test 
hypotheses, etc.  
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multiscale phenomena Equations representing the 
dynamics of a nonlinear system 
that combine the behavior at many 
scales of physical dimension 
and/or time.  

The analysis of multiscale 
phenomena present many 
challenges to numerical analysis 
and associated software, so that 
the coupling of results from one 
scale to those of another may lead 
to instability in the model output 
that might not represent physical 
reality. 
 

multivariate adaptive regression 
splines (MARS)  
See also regression. 
 

A form of nonparametric 
regression analysis (usually 
presented as an extension of linear 
regression) that automatically 
represents nonlinearities and 
interactions in terms of splines 
(e.g., functions having smooth first 
and second derivatives).n  
 

 

non-intrusive methods (black box 
methods)  

Methods to carry out sensitivity 
analysis or forward propagation 
or to solve the inverse problem 
that only require forward runs of 
the computational model, 
effectively treating the model as a 
“black box.” 
 

 

nonlinear regression   
See also regression, linear 
regression. 
 

Regression when the function to 
be fit is nonlinear in the 
independent variables. 
 

 

parameter 
 

Terms in a mathematical function 
that remain fixed during any 
computational procedure.  These 
may include initial conditions, 
physical constants, boundary 
values, etc. 
 

Often parameters are fixed at 
assumed values, or they can be 
estimated using physical 
observations.  Alternatively, 
uncertainty regarding parameters 
may be constrained with physical 
data. 
 

Polynomial Chaos  
Synonym: PC, Wiener chaos 
expansion 
See also Monte Carlo simulation. 
 
 

A parameterization of random 
variables and processes that lends 
itself to the characterization of 
transformations between input and 
output quantities.  The resulting 
representations are akin to a 
response surface with respect to 

The coefficients in these 
representations can be estimated in 
a number of ways, including 
Galerkin projections, least squares, 
perturbation expansions, statistical 
sampling, and numerical 
quadrature. 
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normalized random variables, and 
can be readily evaluated, yielding 
very efficient procedures for 
sampling the output variables. 
 

 

posterior probability  
See also Bayesian approach, prior 
probability. 
 

Probability distribution 
describing uncertainty in 
parameters (and possibly other 
random quantities) of interest in a 
statistical model after data are 
observed and conditioned on. 

The Bayesian approach updates 
the prior probability distribution 
by conditioning on the data (often 
physical observations), producing 
a posterior distribution for the 
same parameters.  Often of interest 
is the posterior predictive 
distribution for a QOI, describing 
uncertainty about the QOI for the 
physical system. 
 

precision  
See also accuracy. 

The implied degree of certainty 
with which a value is stated, as 
reflected in the number of 
significant digits used to express 
the value—the more digits, the 
more precision. (Adapted from 
SRA Glossary.) 
 

Consider two statements assessing 
"W = Bill Gates's net worth."  A 
precise but inaccurate assessment 
is: "W is $123,472.89."  An 
imprecise but accurate assessment 
is: "W is more than $6 billion." 
 

prediction uncertainty  The uncertainty associated with a 
prediction about a QOI for the 
real-world process.  The prediction 
uncertainty could be described by 
a posterior distribution for the 
QOI, a predictive distribution, a 
confidence interval, or possibly 
some other representation. 
 

This is a statement about reality, 
given information from an analysis 
typically involving a 
computational model, physical 
observations, and possibly other 
information sources. 
 

 

prior probability  
Synonym: a priori probability 
See also Bayesian approach, 
posterior probability. 
 

Probability distribution assigned to 
parameters (and possibly other 
random quantities) of interest in a 
statistical model before physical 
observations are available. 

Bayesian approach updates this 
prior probability distribution by 
conditioning on the physical 
observations, producing a 
posterior distribution for the same 
parameters.  Obtaining the prior 
distribution may be done using 
expert judgment or previous data, 
or it may be specified to be 
“neutral” to the analysis. 
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probability 
See also likelihood, conditional 
probability, aleatoric uncertainty, 
subjective probability. 

One of a set of numerical values 
between 0 and 1 assigned to a 
collection of random events 
(which are subsets of a sample 
space) in such a way that the 
assigned numbers obey two 
axioms: 
(1) 0 ≤ P{A} ≤ 1 for any A 
(2) P{A} + P{B} = P{A U B} for 
two mutually exclusive events A 
and B.j 

 

This definition holds for all 
quantification of uncertainty: 
subjective or frequentist. 

probability density function (pdf) The derivative of an absolutely 
continuous cumulative distribution 
function. 
 
For a scalar random variable X, a 
function f such that, for any two 
numbers, a and b, with a ≤ b,  
P{a ≤ X ≤b} = ∫a

b f(x)dx. 
 

The pdf is the common way to 
represent the probability 
distribution of a continuous 
random variable, because its 
shape often displays the central 
tendency (mean) and variability 
(standard deviation).  From its 
definition, P{a < X ≤ b} is the 
integral of the pdf between a and 
b. 
 

probability distribution 
 

See cumulative distribution 
function. 
 

 

probability elicitation  
Synonyms: probability assessment, 
subjective probability 

A process of gathering, 
structuring, and encoding expert 
judgment (about uncertain events 
or quantities) in the form of 
probability statements about future 
events.o  

There are many approaches for 
probability elicitation, the most 
common of which are those used 
for obtaining a priori subjective 
probabilities. Note that the results 
of probability elicitations are 
sometimes called probability 
assessments or assignments. 

quantity of interest (QOI) A numerical characteristic of the 
system being modeled, the value 
of which is of interest to 
stakeholders, typically because it 
informs a decision.  To be useful 
the model must be able to provide, 
as output, values of or probability 
statements about QOIs. 
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reduced model  
Synonym: emulator 
 

A low-fidelity model developed to 
replace (or augment) a 
computationally demanding, high-
fidelity model.   
 

A reduced model is particularly 
useful for carrying out 
computationally demanding 
analysis (e.g., sensitivity analysis, 
forward propagation of 
uncertainty, solving the inverse 
problem) that would be infeasible 
with the original model. 
Sometimes a reduced model 
“collapses” aspects of a “physics-
based” model so as to be referred 
to as a “physics-blind” model.  
 

regression  
See also: linear regression, non-
linear regression. 
 

A form of statistical analysis in 
which observational data are used 
to statistically fit a mathematical 
function that presents the data (i.e., 
dependent variables) as a function 
of a set of parameters and one or 
more independent variables.  

 

 

response surface  
See also sensitivity analysis. 

A function that predicts outputs 
from a model as a function of the 
model inputs.  A response surface 
is typically estimated from an 
ensemble of model runs using a 
regression, Gaussian process 
modeling, or some other 
estimation or interpolation 
procedure.  

A response surface can be used 
like a reduced model, to carry out 
computationally demanding 
analyses (e.g., sensitivity analysis, 
forward propagation, solving the 
inverse problem).  Since the 
response surface does not exactly 
reproduce the computational 
model, there is typically additional 
error in results produced by 
response surface approaches.   
 

robustness analysis 
See also sensitivity analysis. 

For a prescriptive model, a 
procedure that analyzes the degree 
to which deviations from a “best” 
decision provide suboptimal 
values of the desired criterion.  
These deviations can be due to 
uncertainty in model formulation, 
assumed parameter values, etc.  

 
 

sensitivity analysis 
See also robustness analysis. 

An exploration, often by numerical 
(rather than analytical) means of 
how model outputs (particularly 
QOIs) are affected by changes in 
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the inputs (parameter values, 
assumptions, etc.).   
 

simulation  
Synonym: model  
See also Monte Carlo simulation. 

The execution of a computer code 
to mimic an actual system.  
 
 

Many uncertainty quantification 
(UQ) methods use an ensemble of 
simulations, or model runs, to 
construct emulators, carry out 
sensitivity analysis, etc. 
 

solution verification  
See also verification, code 
verification. 

The process of determining as 
completely as possible the 
accuracy with which the 
algorithms solve the mathematical-
model equations for a specified 
QOI.  
 

 

standard deviation 
See also variance. 

The square root of the variance of 
a distribution.j  
 

  

stochastic 
See also probability. 
 

Pertaining to a sequence of 
observations, each of which can be 
considered to be a sample from a 
probability distribution.  
 

Often informally used as a 
synonym of “probabilistic.” 

subjective probability  
See also probability elicitation. 

Expert judgment about uncertain 
events or quantities, in the form of 
probability statements about future 
events. It is not based on any 
precise computation but is often a 
reasonable assessment by a 
knowledgeable person. 
 

 

uncertainty 
See also probability, aleatoric 
probability, epistemic uncertainty. 
 

The condition of being unsure 
about something; a lack of 
assurance or conviction. 

For the purpose of this report, 
uncertainty is often described 
regarding a QOI of the true, 
physical system.  This uncertainty 
depends on a model-based 
prediction, as well as on other 
information included in the VVUQ 
assessment.  This uncertainty can 
be described using probability. 
 

uncertainty quantification (UQ) The process of quantifying 
uncertainties in a computed QOI, 
with the goals of accounting for all 
sources of uncertainty and 

More broadly, UQ can be thought 
of as the field of research that uses 
and develops theory, methodology, 
and approaches for carrying out 
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quantifying the contributions of 
specific sources to the overall 
uncertainty.  
 

inference, with the aid of 
computational models, on 
complex systems. 

validation The process of determining the 
degree to which a model is an 
accurate representation of the real 
world from the perspective of the 
intended uses of the model.p  
 

 

variance  
See also standard deviation. 

The second moment of a 
probability distribution, defined 
as E(X - µ)2, where µ is the first 
moment of the random variable X. 

The variance is a common 
measure of variability around the 
mean of a distribution.  Its square 
root, the standard deviation, 
having dimensional units of the 
random variable, is a more 
intuitively meaningful measure of 
dispersion from the mean. 
 

verification  
See also code verification, solution 
verification.  

The process of determining 
whether a computer program 
(“code”) correctly solves the 
mathematical-model equations.  
This includes code verification 
(determining whether the code 
correctly implements the intended 
algorithms) and solution 
verification (determining the 
accuracy with which the 
algorithms solve the mathematical-
model equations for specified 
QOIs).   

 

 

 
a Society for Risk Analysis (SRA), Glossary of Risk Analysis Terms. Available at 
sra.org/resources_glossary.php.  
b Cornell LCS Statistics Laboratory. See http://instruct1.cit.cornell.edu:8000/courses/ 
statslab/Stuff/indes.php.  
c  American Heritage Dictionary. 2000. Boston: Houghton, Mifflin. 
d Glossary of Statistics Terms. Available at http://www.stat.berkeley.edu/ 
users/stark/SticiGui/Text/gloss.htm. 
e Statistical Education Through Problem Solving [STEP] Consortium. Available at 

http://www.stats.gla.ac.uk/steps/index.html. 
1 W. Feller.  1968.  An Introduction to Probability Theory and Its Applications.  New York, 

N.Y.: Wiley. 
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g J.L. Devore. 2000. Probability and Statistics for Engineering and the Sciences. Pacific Grove, 
Calif.: Duxbury Press. 
h DoD (Department of Defense). 2009. Instruction 5000.61. December 9. Washington, D.C. 
I A.W.F. Edwards. 1992. Likelihood. Baltimore, Md.: Johns Hopkins University Press. 
j  S.M. Ross. 2000. Introduction to Probability Models. New York, N.Y.: Academic Press. 
k Duke University. 1998. Statistical and Data Analysis for Biological Sciences. Available at 
http://www.isds.duke.edu/courses/Fall98/sta210b/terms.html.  
l R. Aris. 1995. Mathematical Modelling Techniques, New York, N.Y.: Dover. 
m  E.J. Henley and H. Kunmamoto. 1981. Reliability Engineering and Risk Assessment. Upper 
Saddle River, N.J.: Prentice-Hall. 
n  J.H. Friedman. 1991. Multivariate Adaptive Regression Splines. The Annals of Statistics. 
19(1):1-67. 
o  M.S. Meyer and J.M. Booker. 1998. Eliciting and Analyzing Expert Judgment. LANL, LA-
UR-99-1659. Los Alamos, N.Mex.: Los Alamos National Laboratory. 
p American Institute for Aeronautics and Astronautics. 1998. Guide for the Verification and 

Validation of Computational Fluid Dynamics Simulations. Reston, Va.: American Institute for 
Aeronautics and Astronautics. 
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Appendix B 
Agendas of Committee Meetings 

 
 
 

JUNE 10-11, 2010 
ALBUQUERQUE, NEW MEXICO 
 
June 10, 2010 
 

  

CLOSED SESSION 
 
8:00 a.m. Working Breakfast 

 
 

8:30 Introduction 
Bias and Conflicts of Interest 
Discussion 
 

Neal Glassman, 
National Research Council (NRC) 
 

OPEN SESSION 
 
9:30 a.m. Verification and 

Validation/Uncertainty 
Quantification (V&V/UQ) for 
the Department of Energy 
(DOE) National Security 
Mission 
 

Thuc Hoang , DOE/National 
Nuclear Security Administration 
(NNSA) 

10:15 Break 
 

 

10:30 A Brief View of Verification, 
Validation, and Uncertainty 
Quantification 
 

J. Tinsley Oden, University of 
Texas at Austin 

11:15 Review of NRC Report on 
Quantification of Margins of 
Uncertainty 
 

Marvin L. Adams, Committee Co-
Chair, Texas A&M University 

12:00 noon Working Lunch 
 

 

1:00 p.m. Opinions on V&V Timothy Trucano, Sandia National 
Laboratories 
 

1:45 The Advance of UQ Science: 
Challenges and Approaches 
 

Richard Klein, Lawrence Livermore 
National Laboratory  

2:35 Break 
 

 

B-1 
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2:50 What Is Predictive Capability? Mark Anderson, Los Alamos 
National Laboratory 

3:35-4:20 Overview of Uncertainty 
Quantification: Research and 
Deployment in the DAKOTA 
project 
 

Michael Eldred, 
Sandia National Laboratories 

CLOSED SESSION 
 
4:15 p.m. Committee Discussion 

 
 

6:00 Working Dinner  
 
 
June 11, 2010 
 

  

8:00 a.m. Working Breakfast 
 

 

OPEN SESSION 
 
8:30 a.m. The Virtual Measurement 

Systems Program at the National 
Institute of Standards and 
Technology (NIST) 
 

Andrew Dienstfrey, NIST 

9:00 Uncertainty Quantification and 
V&V for Environmental Models 
 

Bruce Robinson, Los Alamos 
National Laboratory 

9:45 Break 
 

 

10:00 Climate Model Uncertainties Peter Gleckler, Lawrence 
Livermore National Laboratory 
 

CLOSED SESSION 
 
10:45 a.m. Committee Discussion  
 

B-2 
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AUGUST 23-24, 2010 
WASHINGTON, D.C. 
 
August 23, 2010 
 

  

CLOSED SESSION 
 
8:00 a.m. Working Breakfast 

 
 

8:30 Reprise of Bias and Conflicts of 
Interest Discussion  
 

Neal Glassman, NRC 
 
 

OPEN SESSION 
 

David M. Higdon, Committee Co-
Chair, Los Alamos National 
Laboratory 
 

8:45 a.m. Uncertainty, Risk, and Expert 
Opinion 
 

Bilal Ayyub, University of 
Maryland 

9:45 Verification and Validation 
Methods 
 

Mikel Petty, University of Alabama 
in Huntsville 
 

10:45 Break  
 

11:00 V&V in Warfare Modeling Susan Sanchez, Naval Postgraduate 
School 
 

12:00 noon Working Lunch 
 

 

OPEN SESSION 
 

Marvin L. Adams, Committee Co-
Chair, Texas A&M University 
 

12:45 p.m. V&V in Very Large-Scale 
Simulation 
 

Christopher Barrett, Virginia 
Polytechnic Institute and State 
University 
 

1:45 V&V in Economic Modeling Christopher Sims, Princeton 
University 
 

2:45 Break  
 

3:00 V&V in the Multi-Modeling 
Domain 
 

Alex Levis, George Mason 
University 

CLOSED SESSION 
 
4:00 p.m. Discussion of Issues and Report  
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5:00 Reception 

 
 

6:00 Working Dinner 
 

 

 
 
August 24, 2010 
 
OPEN SESSION 
 

David M. Higdon, Committee Co-
Chair, Los Alamos National 
Laboratory 
 

8:00 a.m. Working Breakfast 
 

 

8:30 Limits of Predictability Louis Anthony Cox, Jr., Cox 
Associates 
 

9:30 Modeling at the University of 
Illinois at Urbana-Champaign 

Eric Michielssen, University of 
Michigan 
 

CLOSED SESSION 
 
10:30 a.m. Working Lunch and Further 

Discussion 
 

 
 
FEBRUARY 1-2, 2011 
Irvine California 
 
The meeting was closed in its entirety. 
 
MARCH 17-18, 2011 
San Francisco, California 
 
The meeting was closed in its entirety. 
 
MAY 18-19, 2011 
Chicago, Illinois 
 
The meeting was closed in its entirety. 
 
JULY 8-9, 2011 
La Jolla, California 
 
The meeting was closed in its entirety.
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Appendix C 
 

Committee Biographies 
 
 
Marvin L. Adams, Co-Chair is the HTRI [Heat Transfer Research, Inc.] Professor of 
Nuclear Engineering and the director of the Institute for National Security Education and 
Research at Texas A&M University.  His research has focused on many aspects of 
computational science and engineering, including discretization methods, iterative 
methods, parallel algorithms, and the quantification of predictive capability.  He has 
served as a consultant to the Lawrence Livermore National Laboratory (LLNL), Sandia 
National Laboratories, and Los Alamos National Laboratory, and has served on a variety 
of review and advisory committees and panels for the laboratories, the Department of 
Energy, and other governmental organizations.  Dr. Adams earned his B.S. (1981) from 
Mississippi State University followed by M.S. (1984) and Ph.D. (1986) degrees from the 
University of Michigan, all in nuclear engineering.  From 1977 to 1982 he worked at the 
Tennessee Valley Authority’s Sequoyah Nuclear Plant and its support office.  He joined 
LLNL after completing his graduate work in 1986.  He left LLNL in 1992 for the faculty 
position that he continues to hold at Texas A&M University.  In 2006 and 2007, Dr. 
Adams founded and directed the Center for Large-scale Scientific Simulations at Texas 
A&M, and from 2005 until 2009 he served as associate vice president for research.  
Previously Dr. Adams served on the National Research Council’s Committee on 
Evaluation of Quantification of Margins and Uncertainties Methodology for Assessing 
and Certifying the Reliability of the Nuclear Stockpile. 
 
David M. Higdon, Co-Chair, is a member of the Statistical Sciences Group at the Los 
Alamos National Laboratory (LANL).  He is an internationally recognized expert in 
Bayesian statistical modeling of environmental and physical systems. He has also led 
numerous programmatic efforts at LANL in the quantification of margins and 
uncertainties and uncertainty quantification.  His recent research has focused on 
simulation-aided inference in which physical observations are combined with computer 
simulation models for prediction and inference.  His research interests include space-time 
modeling; inverse problems in physics, hydrology and tomography; inference based on 
combining deterministic and stochastic models; multiscale models; parallel processing in 
posterior exploration; statistical modeling in physical, environmental and biological 
sciences; Monte-Carlo and simulation based methods. 
 
Members 
 
James O. Berger is Arts and Sciences Professor of Statistics at Duke University.  He 
was a faculty member in the Department of Statistics at Purdue University until 1997, 
when he moved to the Institute of Statistics and Decision Sciences (now the Department 
of Statistical Science) at Duke University. He has also been the director of the national 
Statistical and Applied Mathematical Sciences Institute since 2002. He was the  president 
of the Institute of Mathematical Statistics (1995-1996), chair of the Section on Bayesian 
Statistical Science of the American Statistical Association (1995), and president of the 
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International Society for Bayesian Analysis (2004).  He has been involved with numerous 
editorial activities, including co-editorship of the Annals of Statistics (1998-2000).  He 
has organized or participated in the organization of more than 35 conferences.  Among 
the awards and honors that Professor Berger has received are Guggenheim and Sloan 
Fellowships, the COPSS [Committee of Presidents of Statistical Societies] President’s 
Award (1985), the Sigma Xi Research Award at Purdue University for contribution of the 
year to science (1993), the Fisher Lectureship (2001), election as foreign member of the 
Spanish Real Academia de Ciencias (2002), election to the United States National 
Academy of Sciences (2003), an honorary Doctor of Science degree from Purdue 
University (2004), and the Wald Lectureship (2007).  Professor Berger’s research has 
primarily been in Bayesian statistics, foundations of statistics, statistical decision theory, 
simulation, model selection, and various interdisciplinary areas of science and industry, 
especially astronomy and the interface between computer modeling and statistics.  He has 
supervised 31 Ph.D. dissertations, published more than 160 articles, and written or edited 
14 books or special volumes. 
 
Derek Bingham is an associate professor and the Canada Research Chair in Industrial 
Statistics in the Department of Statistics and Actuarial Science at Simon Fraser 
University.   He received his Ph.D. from the Department of Mathematics and Statistics at 
Simon Fraser University in 1999.  After graduation he joined the Department of Statistics 
at the University of Michigan as an assistant professor, returning to Simon Fraser in 
2003.  In addition, he has held a faculty affiliate position at the Los Alamos National 
Laboratory.  The main focus of Dr. Bingham’s research is the development of statistical 
methodology for the design and analysis of industrial and physics experiments.  This 
work focuses on developing new methodology for (1) the design and analysis of 
computer experiments; and (2) the design and analysis of experiments in industrial 
problems such as optimal screening designs, response surface optimization and optimal 
robust parameter designs for product variation reduction.  
 
Wei Chen is the Wilson-Cook Chair and Professor in Engineering Design at 
Northwestern University.  She is affiliated with the Segal Design Institute as a faculty 
fellow and is a professor in the Department of Mechanical Engineering, with a courtesy 
appointment in the Department of Industrial Engineering and Management.  As a director 
of the Integrated Design Automation Laboratory, her current research involves issues 
such as simulation-based design under uncertainty, model validation, stochastic 
multiscale analysis and design, robust shape and topology optimization, multidisciplinary 
optimization, consumer choice modeling, and enterprise-driven decision-based design.   
She is the co-founder and director of the interdisciplinary doctoral cluster in predictive 
science and engineering design at Northwestern University, a program aiming for 
integrating scientific, physics-based modeling, and simulation into the design of 
innovative “engineered” systems.  Dr. Chen is the recipient of the 1996 National Science 
Foundation Faculty Early Career Award and the 1998 American Society of Mechanical 
Engineers (ASME) Pi Tau Sigma Gold Medal achievement award.  She is also the 
recipient of the 2005 Intelligent Optimal Design Prize and the 2006 Society of 
Automotive Engineering (SAE) Ralph R. Teetor Educational Award.  Dr. Chen is a 
fellow of ASME, associate fellow of the American Institute of Aeronautics and 
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Astronautics, and a member of SAE.  She is an elected member of the ASME Design 
Engineering Division Executive Committee and an elected Advisory Board member of 
the Design Society, an international design research community.  She is an Associate 
Editor of the ASME Journal of Mechanical Design and serves as the review editor of 
Structural and Multidisciplinary Optimization.  In the past, she served as the chair and a 
member of the ASME Design Automation Executive Committee (2002-2007) and was an 
associate editor of  the Journal of Engineering Optimization 
  
Roger Ghanem is the Gordon S. Marshall Professor of Engineering Technology in the 
Viterbi School at the University of Southern California (USC).  Dr. Ghanem has a Ph.D. 
in civil engineering from Rice University and had served on the faculty of the Schools of 
Engineering at SUNY [State University of New York]-Buffalo and Johns Hopkins 
University before joining USC in 2005.  Dr. Ghanem's research is mainly in the area of 
computational science and engineering with a focus on uncertainty quantification and 
prediction validation in complex systems.  His recent interests include the sustainability 
of coupled interacting systems such as the SmartGrid and the interface of human and 
natural environments, as well as the predictability of physical behaviors exhibiting 
coupling between multiple underlying phenomena and scales.  Dr. Ghanem has more than 
100 refereed journals publications in the general areas of stochastic modeling and 
computations and dynamical systems.  He has received several awards for his teaching 
and research, is the founding editor of Lecture Notes in Mechanics (Engineering 
Mechanics Institute of the American Society of Civil Engineers [ASCE-EMI]), and 
serves on the advisory board of a number of professional journals.  He currently serves on 
the Board of Governors of the ASCE-EMI, is program director of the Society of 
Industrial and Applied Mathematics (SIAM) Activity Group on Uncertainty 
Quantification (SIAG/UQ), and chairs the U.S. Association for Computational Mechanics  
committee of SIAG/UQ.  
 
Omar Ghattas is the John A. and Katherine G. Jackson Chair in Computational 
Geosciences and professor of geological sciences and mechanical engineering at the 
University of Texas (UT) at Austin.  He is also a research professor in the Institute for 
Geophysics, director of the Center for Computational Geosciences in the Institute for 
Computational Engineering and Sciences, professor of biomedical engineering and 
computer sciences (by courtesy), co-chief applications scientist for the 580 Teraflops 
NSF Track 2 supercomputer at the Texas Advanced Computing Center, and  director of 
the KAUST-UT [King Abdullah University of Science and Technology]–UT Austin 
Academic Excellence Alliance.  From 1989 to 2005, he was a professor at Carnegie 
Mellon University (CMU).  He has been a visiting professor at the Institute for Computer 
Applications in Science and Engineering at NASA-Langley Research Center, the Center 
for Applied Scientific Computing at the Lawrence Livermore National Laboratory, and 
the Computer Science Research Institute at the Sandia National Laboratories.  Professor 
Ghattis’s research interests are in the forward and inverse modeling and the optimal 
design and control of complex systems in the geological, mechanical, and biomedical 
engineering sciences, with particular emphasis on large-scale simulation on parallel 
supercomputers.  He received the 1998 Allen Newell Medal for Research Excellence, the 
Supercomputing 2002 Best Technical Paper Award, the 2003 Gordon Bell Prize for 
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Special Accomplishment in Supercomputing, the 2004/2005 CMU College of 
Engineering Outstanding Research Prize, the SC2006 HPC [High Performance 
Computing] Analytics Challenge Award, and the TeraGrid 2008 Capability Computing 
Challenge Award, and he was a finalist for the 2008 Gordon Bell Prize.  Professor 
Ghattas’s recent professional activities have included service in the following capacities: 
he has organized 10 conferences and workshops in computational science and 
engineering; delivered 15 keynote or plenary talks at major international conferences; 
was program director for the Computational Science and Engineering Activity Group of 
the Society for Industrial and Applied Mathematics (SIAM); served as founding editor-
in-chief of SIAM's Computational Science and Engineering series; was associate editor 
of the SIAM Journal on Scientific Computing and editorial board member of seven other 
journals; served as a member of the SIAM Program Committee; and was a member of the 
Science Steering Committee for the Computational Infrastructure for Geodynamics 
project. 
 
Juan Meza is dean of the School of Natural Sciences at the University of California, 
Merced.  Prior to joining UC Merced, he was the department head of High Performance 
Computing Research at the Lawrence Berkeley National Laboratory, where he oversaw 
work in computational science and mathematics, computer science and future 
technologies, scientific data management, visualization, numerical algorithms and 
application development. His current research interests include nonlinear optimization 
with an emphasis on methods for parallel computing.  He has also worked on various 
scientific and engineering applications including scalable methods for nanoscience , 
electric power grid reliability, cyber security, molecular conformation problems, optimal 
design of chemical vapor deposition furnaces, and semiconductor device modeling.  Dr. 
Meza also held the position of Distinguished Member of the Technical Staff at the Sandia 
National Laboratories and served as the manager of the Computational Sciences and 
Mathematics Research Department.  In this capacity, he acted as the Research Foundation 
Network Research program manager, the ASCI Problem Solving Environment Advanced 
Software Development Environment program manager, and served as a member of the 
Sandia/California Research Council.  Dr. Meza was recently named to the Top 100 
Influentials list of Hispanic Business Magazine in the area of science.  In addition, he was 
elected a Fellow of the American Association for the Advancement of Science.  In 2008, 
Dr. Meza was the recipient of the Blackwell-Tapia Prize and the SACNAS [Society for 
the Advancement of Chicanos and Native Americans in Science] Distinguished Scientist 
Award.  He was also a member of the team that won the 2008 ACM Gordon Bell Award 
for Algorithm Innovation.  Dr. Meza has served on numerous external committees 
including the National Science Foundation’s Mathematical and Physical Sciences 
Advisory Committee, the Department of Energy’s Advanced Scientific Computing 
Advisory Committee, the Mathematical Sciences Research Institute's Human Resources 
Advisory Committee, the Board of Trustees of the Institute for Pure and Applied 
Mathematics, the Board of Governors of the Institute for Mathematics and its 
Applications, and the Board of Trustees of the Society of Industrial and Applied 
Mathematics ( ). SIAM
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Eric Michielssen is professor of electrical and computer engineering at the University of 
Illinois at Urbana-Champaign (UIUC).  His research interests include all aspects of 
theoretical and applied computational electromagnetics with an emphasis on the 
development of fast frequency and time domain integral-equation-based techniques for 
analyzing electromagnetic phenomena and robust optimizers for electromagnetic/optical 
devices.  Professor Michielssen is the (co-)author of 120 journal articles and book 
chapters and 180 conference papers and abstracts.  He was the recipient of a 1994 
International Union of Radio Scientists (URSI) Young Scientist Fellowship, a 1995 
National Science Foundation CAREER Award, and the 1998 Applied Computational 
Electromagnetics Society Valued Service Award.  In addition, he was named 1999 URSI 
United States National Committee Henry G. Booker Fellow and was selected as the 
recipient of the 1999 URSI Koga Gold Medal.  Recently, he was awarded the UIUC’s 
2001 Xerox Award for Faculty Research and was appointed Beckman Fellow in its 
Center for Advanced Studies, UIUC Scholar, and Sony Faculty Fellow. He is an associate 
editor for the IEEE Transactions on Antennas and Propagation and a fellow of the 
Institute of Electrical and Electronics Engineers (IEEE).  

 
Vijay Nair is Donald A. Darling Professor of Statistics and professor of industrial and 
operations engineering at the University of Michigan.  He was chair of the Department of 
Statistics from 1998-2010.  His past experience includes 15 years as a research scientist 
at Bell Laboratories.  He has a broad range of interests in statistical methodology and 
applications, especially in engineering statistics.  He is involved with the Center for 
Radiative Shock Hydrodynamics (CRASH) at the University of Michigan, one of five 
national centers funded under the Predictive Science Academic Alliance Program by the 
National Nuclear Security Administration’s Office of Advanced Simulation and 
Computing.  As part of this center, Dr. Nair has been involved in modeling and analyzing 
data from large-scale simulation models and in uncertainty quantification.  He is the 
president-elect of the International Statistical Institute and President of the International 
Society for Business and Industrial Statistics.  He is a senior fellow of the Michigan 
Society of Fellows and a fellow of the American Association for the Advancement of 
Science, the American Society for Quality, the American Statistical Association, and the 
Institute of Mathematical Statistics.  He currently serves on the National Research 
Council’s Board of Mathematical Sciences and their Application, is chairing or has 
(co)chaired three committees, and has served on many others.  He has a Ph.D. in statistics 
from the University of California, Berkeley. 
 
Charles W. Nakhleh manages the Inertial Confinement Fusion (ICF) Target Design 
Department in the Pulsed Power Sciences Center at the Sandia National Laboratories. He 
supervises theoretical design and analysis efforts for ICF targets for the Z pulsed-power 
facility.  His department is also involved in the analysis and design of experiments for the 
National Ignition Campaign (NIC).  Dr. Nakleh joined Sandia National Laboratories in 
December 2007.  From 2005 to 2007, he was the group leader (acting) and deputy group 
leader of the Thermonuclear Applications Group (X-2) at the Los Alamos National 
Laboratory (LANL), where, among other tasks, he oversaw the W88 and Reliable 
Replacement Warhead efforts.  He had spent nearly a decade before that as a staff 
member in X-2, working on a wide variety of weapons-physics and design issues, 
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including the development and application of the Quantification of Margins and 
Uncertainties (QMU) methodology to simulation-based predictions.  Dr. Nakleh is a 
graduate of the Theoretical Institute of Thermonuclear and Nuclear Studies (TITANS) 
program at LANL.  He was a member of study teams that received Department of Energy 
Awards of Excellence in 1999, 2000, 2005, and 2007.  He has served on a wide variety of 
advisory panels, including as a founding member of the National Nuclear Security 
Administration’s (NNSA’s) Predictive Science Panel, the LANL Director’s advisory 
panel on weapons certification, a consultant to the 2009 JASON study on warhead Life 
Extension Programs, an adviser to the Undersecretary of Energy for Science on the NIC, 
and an adviser to NNSA on a variety of weapons physics issues.  His research interests 
span a wide range of ICF, radiation effects, and other applications of high energy density 
physics, and applications of Bayesian inference techniques.  He received his Ph.D. in 
Physics from Cornell University in 1996. 
 
Douglas Nychka is the director of the Institute of Mathematics Applied to Geosciences 
at the National Center for Atmospheric Research (NCAR), an interdisciplinary 
component with a focus on transferring innovative mathematical and statistical tools to 
the Geosciences.  Dr. Nychka is a statistical scientist with an interest in the problems 
posed by the analysis of geophysical data sets.  He received his Ph.D. from the University 
of Wisconsin in 1983.  Subsequently he spent 14 years as a faculty member at North 
Carolina State University. His interest in environmental problems and a background in 
fitting curves and surface to spatial data lead him to assume leadership of the statistics 
project at the National Center for Atmospheric Research (NCAR). Dr. Nychka was 
suggested by CATS member Michael Stein. 
 
Stephen M. Pollock was Herrick Professor of Manufacturing and professor of industrial 
and operations engineering at the University of Michigan until his recent retirement.  He 
taught courses in decision analysis, mathematical modeling, dynamic programming, and 
stochastic processes.  His research activities include developing cost-optimal monitoring 
and maintenance policies, sequential hypothesis testing, modeling large multiserver 
systems, and dynamic optimization of radiation treatment plans.  He was the director of 
the Program in Financial Engineering and the Engineering Global Leadership honors 
program.  He has been an area editor of Operations Research, senior editor of IIE 
Transactions, president (1986) of the Operations Research Society of America, and a 
senior fellow of The University of Michigan Society of Fellows.  Dr. Pollock is a 
founding fellow of the Institute for Operations Research and the Management Sciences; 
he was awarded its Kimball Medal in 2002.  He was a member of the Army Science 
Board and is a member of the National Academy of Engineering.  His previous National 
Research Council experience includes chairing the Committee on National Statistic’s 
(CNSTAT’s) panel on Operational Test Design and Evaluation of the Interim Armored 
Vehicle (2002-2003), serving on the Committee on Applied and Theoretical Statistics 
(CATS) and on CNSTAT’s panel on Statistical Methods for Testing and Evaluating 
Defense Systems (1995-1998), and serving on the Committee on Modeling and 
Simulation for Defense Transformation and on the Committee on Methodological 
Improvements to the Department of Homeland Security’s Biological Agent Risk 
Analysis. 
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Howard A. Stone is a professor in the Department of Mechanical and Aerospace 
Engineering at Princeton University.  He received the B.S. degree in chemical 
engineering from the University of California at Davis in 1982 and his Ph.D. in chemical 
engineering from the California Institute of Technology in 1988.  Following a 
postdoctoral year in the Department of Applied Mathematics and Theoretical Physics at 
the University of Cambridge, in 1989 he joined the faculty of the (now) School of 
Engineering and Applied Sciences at Harvard University, where he eventually became 
the Vicky Joseph Professor of Engineering and Applied Mathematics. In 1994 he 
received both the Joseph R. Levenson Memorial Award and the Phi Beta Kappa Teaching 
Prize, which are the only two teaching awards given to faculty in Harvard College.  In 
2000 he was named a Harvard College Professor for his contributions to undergraduate 
education.  Recently he moved to Princeton University where he is Donald R. Dixon ’69 
and Elizabeth W. Dixon Professor in the Department of Mechanical and Aerospace 
Engineering.  Professor Stone’s research interests are in fluid dynamics, especially as it 
arises in research and applications at the interfaces of engineering, chemistry and physics. 
His group tackles problems with a combination of experimental, theoretical, and 
modeling approaches.  He has received the National Science Foundation Presidential 
Young Investigator Award, is a fellow of the American Physical Society (APS), and is 
past chair of the Division of Fluid Dynamics of the APS.  For ten years he served as an 
associate editor of the Journal of Fluid Mechanics, and he is currently on the editorial or 
advisory boards of New Journal of Physics, Soft Matter and Physics of Fluids.  He is the 
first recipient of the G.K. Batchelor Prize in Fluid Dynamics, which was awarded in 
August 2008.  In 2009 he was elected to the National Academy of Engineering.  
 
Dr. Alyson Gabbard Wilson is a research staff member at the Institute for Defense 
Analyses (IDA) Science and Technology Policy Institute. Before coming to IDA, she was 
an associate professor in the Department of Statistics at Iowa State University. Dr. 
Wilson received her Ph.D. in statistics from Duke University, her M.S. in statistics from 
Carnegie-Mellon University, and her B.A. in mathematical sciences from Rice 
University.  She is a fellow of the American Statistical Association and a recognized 
expert in statistical reliability, Bayesian methods, and the application of statistics to 
problems in defense and national security.  Prior to joining Iowa State University, Dr. 
Wilson was a project leader and technical lead for Department of Defense Programs in 
the Statistical Sciences Group at the Los Alamos National Laboratory (1999-2008), a 
senior statistician and operations research analyst with Cowboy Programming Resources 
(1995-1999), and a mathematical statistician at the National Institutes of Health (1991-
1992).  She is a founder and past-chair of the American Statistical Association’s Section 
on Statistics in Defense and National Security.  She is a member of the Technometrics 
management committee and serves as reviews editor for the American Statistician and the 
Journal of the American Statistical Association.  In addition to numerous publications, 
Dr. Wilson has co-authored a book, Bayesian Reliability, and has co-edited two other 
books, Statistical Methods in Counterterrorism: Game Theory, Modeling, Syndromic 
Surveillance and Biometric Authentication and Modern Statistical and Mathematical 
Methods in Reliability.  She holds a patent for her early work in medical imaging. 
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Michael R. Zika is a project leader and an associate division Leader in AX Division at 
the Lawrence Livermore National Laboratory (LLNL).  He earned both his B.S. (1991) 
and his M.S. (1992) from Purdue University, and his Ph.D. (1997) from Texas A&M 
University, all in nuclear engineering.  In 1997 he joined LLNL as a computational 
physicist. His work focused on algorithms and physics models for modeling radiative 
transfer. As a project leader, Dr. Zika has led a large team of computational physicists 
and computer scientists to deliver massively parallel 2D/3D multi-physics simulation 
tools for high energy density physics in support of the Stockpile Stewardship Program.  
These tools have been used to design and analyze experiments on the National Ignition 
Facility.  In 2006 he led a team and in 2009 was a member of a team that received a 
Department of Energy Award of Excellence.  Dr. Zika has served as adjunct faculty at 
Texas A&M University and visiting faculty at the University of California, Berkeley. He 
has participated in a variety of strategic planning efforts at the request of the Advanced 
Simulation and Computing Program Office in the Department of Energy’s National 
Nuclear Security Administration. 
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Appendix D 
 

LIST OF ACRONYMS 
 
AD  automatic differentiation     
AMR  adaptive mesh refinement     
ASCE  American Society of Civil Engineers    
CAD computer-aided design      
CPU central processing unit      
CRASH Center for Radiative Shock Hydrodynamics   
DEIM Discrete Empirical Interpolation Method   
DOE Department of Energy      
EIM Empirical Interpolation Method     
EMI electromagnetic interference     
GP Gaussian process      
gPC generalized polynomial chaos     
IPCC Intergovernmental Panel on Climate Change   
LANL Los Alamos National Laboratory     
LLNL Lawrence Livermore National Laboratory   
MASA Manufactured Analytic Solution Abstraction   
MC Monte Carlo       
MCMC Markov chain Monte Carlo     
MME multimodel ensemble      
MMS method of manufactured solutions    
MPS Division of Mathematics and Physical Sciences (National 
  Science Foundation)     
M/U margin-to-uncertainty (ratio)     
NAE National Academy of Engineering    
NASA National Aeronautics and Space Administration   
NNSA National Nuclear Security Administration   
NWS National Weather Service     
ODE ordinary differential equation     
PC polynomial chaos      
PDE partial differential equation     
PDF probability density function     
PECOS Center for Predictive Engineering and  

Computational Sciences     
POD proper orthogonal decomposition    
PSAAP Predictive Science Academic Alliance Program   
QMU Quantification of Margins and Uncertainty   
QOI quantity of interest 
SA sensitivity analysis; Spalart-Allmaras    
SC stochastic collocation      
SNL Sandia National Laboratories     
SPICE Simulation Program with Integrated Circuit Emphasis  
SQA software quality assurance     

D-1 
 



Copyright © National Academy of Sciences. All rights reserved.

Assessing the Reliability of Complex Models:  Mathematical and Statistical Foundations of Verification, Validation, and Uncertainty Quantification

PREPUBLICATION COPY—SUBJECT TO FURTHER EDITORIAL 
CORRECTION 

D-2 
 

                                                

SSP Stockpile Stewardship Program     
SUPG streamline-upwind/Petrov-Galerkin    
TPM tire pressure monitoring     
TPS thermal protection system     
UQ uncertainty quantification 
V&V  verification and validation 
VVUQ  verification, validation, and uncertainty quantification 
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